会员登陆: 用户名:  密码: 验证码:
首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   陈银娟, 熊行创, 李振华, 江游, 方向, 戴新华, 丁传凡. 亮氨酸-脑啡肽结合H+和Li+的氢氘交换实验与理论研究. 分析化学, 2018, 46(4): 556-562. doi:  10.11895/j.issn.0253-3820.171479 [复制]

Citation:   CHEN Yin-Juan, XIONG Xing-Chuang, LI Zhen-Hua, JIANG You, FANG Xiang, DAI Xin-Hua, DING Chuan-Fan. Investigation of Protonated and Lithiated Leucine-Enkephalin by Hydrogen/Deuterium Exchange and Theoretical Calculations. Chinese Journal of Analytical Chemistry, 2018, 46(4): 556-562. doi: 10.11895/j.issn.0253-3820.171479 [复制]

亮氨酸-脑啡肽结合H+和Li+的氢氘交换实验与理论研究

通讯作者:  丁传凡, cfding@fudan.edu.cn

收稿日期: 2017-12-05

接受日期: 2018-01-09

出版日期: 2018-04-01

基金项目: 本文系国家自然科学基金项目(Nos.21773035,21605135)和国家重大仪器设备开发专项(No.2012YQ22011307)资助

Investigation of Protonated and Lithiated Leucine-Enkephalin by Hydrogen/Deuterium Exchange and Theoretical Calculations

Corresponding author:  DING Chuan-Fan, cfding@fudan.edu.cn

Received Date:  2017-12-05

Accepted Date:  2018-01-09

Published Date:  2018-04-01

Fund Project:  This work was supported by the National Natural Science Foundation of China (Nos.21773035, 21605135) and the Ministry of Science and Techndogy of China (No.2012YQ22011307)

气相氢氘交换质谱(HDX-MS)实验与量子化学计算结合,比较了亮氨酸-脑啡肽(YGGFL)结合H+和Li+的反应和结构差异性。HDX-MS结果表明,在相同的实验条件下,[YGGFL+Li]+在交换5个氢原子后,氢氘同位素反应趋于停止,而[YGGFL+H]+上的9个可交换氢原子均可发生交换。这表明Li+会降低脑啡肽的氢氘交换率。理论计算发现,两种离子具有不同的最稳定结构:Li+与脑啡肽肽上的4个羰基氧原子结合能量最低,而脑啡肽氨基端发生质子化后产生最稳定的[YGGFL+H]+。基于此稳定结构,实验进一步从离子结构差异性和质子亲和势等方面对HDX实验结果进行了分析。

关键词:   氢氘交换, 亮氨酸-脑啡肽, 质谱, 锂离子, 气相结构
Key words:   Hydrogen-deuterium exchange, Leucine-enkephalin, Mass spectrometry, Lithium ion, Gas-phase conformation
[1]

Hughes J, Smith T W, Kosterlitz H W, Fothergill L A, Morgan B A, Morris H R. Nature, 1975, 258(5536): 577-579. doi: 10.1038/258577a0

[2]

Simantov R, Snyder S H. Proc. Natl. Acad. Sci., 1976, 73(7): 2515-2519. doi: 10.1073/pnas.73.7.2515

[3]

Pert C B, Snyder S H. Mol. Pharmacol., 1974, 10(6): 868-879

[4]

Poupaert J H, Portoghese P S, Garsky V. J. Med. Chem., 1976, 19(11): 1354-13565. doi: 10.1021/jm00233a023

[5]

Kostyukevich Y I, Kononikhin A S, Indeykina M I, Popov I A, Bocharov K V, Spassky A I, Kozin S A, Makarov A A, Nikolaev E N. Mol. Biol., 2017, 51(4): 627-632. doi: 10.1134/S0026893317030104

[6]

Bonvin G, Bobst C E, Kaltashov I A. Int. J. Mass Spectrom., 2017, 420(SI): 74-82

[7]

Chen Y, Yue L, Li Z, Ding X, Wang L, Dai X, Fang X, Pan Y, Ding C. Anal. Methods, 2015, 7(13): 5551-5556. doi: 10.1039/C5AY00684H

[8]

Greenblatt D Y, Ndiaye M, Chen H, Kunnimalaiyaan M. Am. J. Transl. Res., 2010, 2(3): 248-253

[9]

Bezchlibnyk Y B, Xu L, Wang J, Young L T. Brain Res., 2007, 1147: 213-217. doi: 10.1016/j.brainres.2007.01.147

[10]

Hansen D K, Walker R C, Grafton T F. Teratology, 1990, 41(2): 155-160. doi: 10.1002/(ISSN)1096-9926

[11]

Bowden C L, Calabrese J R, Mcelroy S L, Gyulai L, Wassef A, Petty F, Pope H G, Chou J, Keck P E, Rhodes L J, Swann A C, Hirschfeld R, Wozniak P J. Arch. Gen. Psychiat., 2000, 57(5): 481-489. doi: 10.1001/archpsyc.57.5.481

[12]

Hartigan G P. Brit. J. Psychiat., 1963, 109(463): 810-814. doi: 10.1192/bjp.109.463.810

[13]

Shahzad B, Mughal M N, Tanveer M, Gupta D, Abbas G. Environ. Sci. Pollut. Res., 2017, 24(1): 103-115. doi: 10.1007/s11356-016-7898-0

[14]

Margret A A, Dhayabaran V V, Kumar A G. Prog. Biomater., 2017, 6(4): 165-173. doi: 10.1007/s40204-017-0076-8

[15]

Mezni A, Aoua H, Khazri O, Limam F, Aouani E. Biomed. Pharmacother., 2017, 95: 1103-1111. doi: 10.1016/j.biopha.2017.09.027

[16]

Kang K S, Meng Y S, Breger J, Grey C P, Ceder G. Science, 2006, 311(5763): 977-980. doi: 10.1126/science.1122152

[17]

Tanaka J, Yamashita M, Yamashita M, Kajigaya H. Vet. Hum. Toxicol., 1998, 40(4): 193-196

[18]

Gronert S. J. Am. Soc. Mass Spectrom., 1998, 9(8): 845-848. doi: 10.1016/S1044-0305(98)00055-5

[19]

O'Boyle N M, Banck M, James C A, Morley C, Vandermeersch T, Hutchison G R. J. Cheminformatics, 2011, 3: 33-46. doi: 10.1186/1758-2946-3-33

[20]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J, Fox D J Gaussian 09, Revision A. 01, Gaussian, Inc., Walling ford C T, 2009

[21]

Lee C T, Yang W T, Parr R G. Phys. Rev. B, 1988, 37(2): 785-789. doi: 10.1103/PhysRevB.37.785

[22]

Becke A D. Phys. Rev. A, 1988, 38(6): 3098-3100. doi: 10.1103/PhysRevA.38.3098

[23]

Becke A D. J. Chem. Phys., 1993, 98: 5648-5652. doi: 10.1063/1.464913

[24]

Marcsisin S R, Engen J R. Anal. Bioanal. Chem., 2010, 397(3): 967-972. doi: 10.1007/s00216-010-3556-4

[25]

Konermann L, Tong X, Pan Y. J. Mass Spectrom., 2008, 43(8): 1021-1036. doi: 10.1002/jms.v43:8

[26]

Campbell S, Rodgers M T, Marzluff E M, Beauchamp J L. J. Am. Chem. Soc., 1995, 117(51): 12840-12854. doi: 10.1021/ja00156a023

[27]

Wales T E, Engen J R. Mass Spectrom. Rev., 2006, 25(1): 158-170. doi: 10.1002/(ISSN)1098-2787

[28]

Tsutsui Y, Wintrode P L. Curr. Med. Chem., 2007, 14(22): 2344-2358. doi: 10.2174/092986707781745596

[29]

Wyttenbach T, Bowers M T. J. Am. Soc. Mass Spectrom., 1999, 10(1): 9-14. doi: 10.1016/S1044-0305(98)00121-4

[30]

Olmstead W N, Brauman J I. J. Am. Chem. Soc., 1977, 99(13): 4219-4228. doi: 10.1021/ja00455a002

[31]

Asubiojo O I, Brauman J I. J. Am. Chem. Soc., 1979, 101(14): 3715-3724. doi: 10.1021/ja00508a002

[32]

Jaroszewski L, Lesyng B, Tanner J J, Mccammon J A. Chem. Phys. Lett., 1990, 175(4): 282-288. doi: 10.1016/0009-2614(90)80111-P

[33]

Ausloos P, Lias S G. J. Am. Chem. Soc., 1981, 103(13): 3641-3647. doi: 10.1021/ja00403a005

[34]

Cheng X H, Fenselau C. Int. J. Mass Spectrom. Ion Processes, 1992, 122: 109-119. doi: 10.1016/0168-1176(92)87011-3

[35]

Harrison A G. Mass Spectrom. Rev., 1997, 16(4): 201-217. doi: 10.1002/(ISSN)1098-2787

[36]

Solouki T, Fort R C, Alomary A, Fattahi A. J. Am. Soc. Mass Spectrom., 2001, 12(12): 1272-1285. doi: 10.1016/S1044-0305(01)00315-4

[37]

Menges F, Riehn C, Niedner-Schatteburg G. Z. Phys. Chem., 2011, 225(5SI): 595-609

[38]

von Helden G, Wyttenbach T, Bowers M T. Int. J. Mass Spectrom., 1995, 146: 349-364

[39]

Grese R P, Cerny R L, Gross M L. J. Am. Chem. Soc., 1989, 111(8): 2835-2842. doi: 10.1021/ja00190a015

[40]

Teesch L M, Adams J. J. Am. Chem. Soc., 1991, 113(3): 812-820. doi: 10.1021/ja00003a013

[41]

Wang Q, Chu Y, Zhang K, Dai X, Fang X, Ding C. Acta Phys-Chim. Sin., 2012, 28(4): 971-977

计量
  • PDF下载量(11)
  • 文章访问量(296)
  • HTML全文浏览量(2)

目录

亮氨酸-脑啡肽结合H+和Li+的氢氘交换实验与理论研究

陈银娟, 熊行创, 李振华, 江游, 方向, 戴新华, 丁传凡

Figures and Tables