首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   许冰洁, 席佳佳, 冯莹莹, 赵发琼, 曾百肇. 基于二硫化钼/多孔石墨烯复合材料的木犀草素电化学传感器. 分析化学, 2018, 46(12): 1931-1936. doi:  10.11895/j.issn.0253-3820.181284 [复制]

Citation:   XU Bing-Jie, XI Jia-Jia, FENG Ying-Ying, ZHAO Fa-Qiong, ZENG Bai-Zhao. Molybdenum Disulfide/Porous Graphene Composite-based Electrochemical Sensor for Detection of Luteolin. Chinese Journal of Analytical Chemistry, 2018, 46(12): 1931-1936. doi: 10.11895/j.issn.0253-3820.181284 [复制]

基于二硫化钼/多孔石墨烯复合材料的木犀草素电化学传感器

通讯作者:  曾百肇, bzzeng@whu.edu.cn

收稿日期: 2018-04-27

接受日期: 2018-09-30

出版日期: 2018-12-20

基金项目: 本文系国家自然科学基金项目(Nos.21775112,21277105)资助

Molybdenum Disulfide/Porous Graphene Composite-based Electrochemical Sensor for Detection of Luteolin

Corresponding author:  ZENG Bai-Zhao, bzzeng@whu.edu.cn

Received Date:  2018-04-27

Accepted Date:  2018-09-30

Published Date:  2018-12-20

Fund Project:  This work was supported by the National Natural Science Foundation of China (Nos. 21775112, 21277105)

以多孔氧化石墨(pGO)、(NH46Mo7O24·4H2O和NH2CSNH2为原料,用水热法在180℃下反应24 h,合成了MoS2/多孔石墨烯(pGN)复合材料。pGN的多孔结构可缩短反应物扩散路径,增加电极和电解液之间的接触面。基于此复合材料的木犀草素电化学传感器的线性检测范围为0.01~5.0 μmol/L,检出限为6.0 nmol/L(S/N=3)。将此传感器用于口服液和花生壳试样中木犀草素的检测,加标回收率为91.8%~102.4%,相对标准偏差(RSD)小于5.6%。

关键词:   二硫化钼, 多孔石墨烯, 木犀草素, 电化学传感器
Key words:   Molybdenum disulfide, Porous graphene, Luteolin, Electrochemical sensor
[1]

Zhang G, Liu H, Qu J, Li J. Energy Environ. Sci., 2016, 9(4): 1190-1209. doi: 10.1039/C5EE03761A

[2]

Qiao X Q, Zhang Z W, Tian F Y, Hou D F, Tian Z F, Li D S, Zhang Q. Crys. Growth Des., 2017, 17(6): 3538-3547. doi: 10.1021/acs.cgd.7b00474

[3]

Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F. Nano Lett., 2010, 10(4): 1271-1275. doi: 10.1021/nl903868w

[4]

Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D. Adv. Funct. Mater., 2012, 22(7): 1385-1390. doi: 10.1002/adfm.v22.7

[5]

Xu B, Yang L, Zhao F, Zeng B. Electrochim. Acta, 2017, 247: 657-665. doi: 10.1016/j.electacta.2017.06.130

[6]

Zhang W, Zhang P, Su Z, Wei G. Nanoscale, 2015, 7(44): 18364-18378. doi: 10.1039/C5NR06121K

[7]

Lin X, Ni Y, Kokot S. Sens. Actuators B, 2016, 233: 100-106. doi: 10.1016/j.snb.2016.04.019

[8]

Chekin F, Boukherroub R, Szunerits S. Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 73: 627-632. doi: 10.1016/j.msec.2016.12.102

[9]

Shang L, Zhao F, Zeng B. ACS Appl. Mater. Interfaces, 2014, 6(21): 18721-18727. doi: 10.1021/am504276g

[10]

Salah A, Hassan M, Liu J, Li M, Bo X, Ndamanisha J C, Guo L. J. Colloid Interface Sci., 2018, 512: 379-388. doi: 10.1016/j.jcis.2017.10.022

[11]

Jiang L, Fan Z. Nanoscale, 2014, 6(4): 1922-1945. doi: 10.1039/C3NR04555B

[12]

Liu Y Z, Zhu Y Z, Fan X B, Wang S B, Li Y, Zhang F B, Zhang G L, Peng W C. Carbon, 2017, 121: 163-169. doi: 10.1016/j.carbon.2017.05.092

[13]

Li X. Int. J. Electrochem. Sci., 2017, : 9774-9783. doi: 10.20964/2017.10.79

[14]

Zeng L, Zhang Y, Wang H, Guo L. Anal. Meth., 2013, 5(13): 3365-. doi: 10.1039/c3ay00047h

[15]

Liu C S, Song Y S, Zhang K J, Ryu J C, Kim M, Zhou T H. J. Pharm. Biomed. Anal., 1995, 13(11): 1409-1414. doi: 10.1016/0731-7085(95)01523-N

[16]

Areias F M, Valentao P, Andrade P B, Ferreres F, Seabra R M. Food Chem., 2001, 73(3): 307-311. doi: 10.1016/S0308-8146(00)00302-2

[17]

Baranowska I, Raróg D. Talanta, 2001, 55(1): 209-212. doi: 10.1016/S0039-9140(01)00408-8

[18]

Chu Q C, Wu T, Fu L, Ye J N. J. Pharm. Biomed. Anal., 2005, 37(3): 535-541. doi: 10.1016/j.jpba.2004.11.018

[19]

Chen S, Duan J, Jaroniec M, Qiao S Z. J. Mater. Chem. A, 2013, 1(33): 9409-. doi: 10.1039/c3ta00133d

[20]

Wu D, Wang Y, Wang F, Wang H, An Y, Gao Z, Xu F, Jiang K. Carbon, 2017, 123: 756-766. doi: 10.1016/j.carbon.2017.07.086

[21]

Chen J, Chi F Y, Huang L, Zhang M, Yao B W, Li Y R, Li C, Shi G Q. Carbon, 2016, 110: 34-40. doi: 10.1016/j.carbon.2016.08.096

[22]

Liu Y R, Hu W H, Li X, Dong B, Shang X, Han G Q, Chai Y M, Liu Y Q, Liu C G. Appl. Surf. Sci., 2016, 384: 51-57. doi: 10.1016/j.apsusc.2016.05.007

[23]

Zhang S, Yu X, Yu H, Chen Y, Gao P, Li C, Zhu C. ACS Appl. Mater. Interfaces, 2014, 6(24): 21880-21885. doi: 10.1021/am5061036

[24]

Zhang L, Fan W, Tjiu W W, Liu T. RSC Adv., 2015, 5(44): 34777-34787. doi: 10.1039/C5RA04391C

[25]

Yin X, Yan Y, Miao M, Zhan K, Li P, Yang J, Zhao B, Xia B Y. Chemistry, 2018, 24(3): 556-560. doi: 10.1002/chem.v24.3

[26]

Peshoria S, Narula A K. J. Mater. Sci., 2017, 53(5): 3876-3888

[27]

Zhao D, Zhang X, Feng L, Qi Q, Wang S. Food Chem., 2011, 127(2): 694-698. doi: 10.1016/j.foodchem.2010.12.125

[28]

Wen Z. Int. J. Electrochem. Sci., 2017, 12: 4847-4855

计量
  • PDF下载量(40)
  • 文章访问量(726)
  • HTML全文浏览量(24)

目录

基于二硫化钼/多孔石墨烯复合材料的木犀草素电化学传感器

许冰洁, 席佳佳, 冯莹莹, 赵发琼, 曾百肇

Figures and Tables