引用本文: 李强, 李媛媛, 朱楠, 高柱仙, 李添君, 周彤, 马玉龙. 基于氧化石墨烯的环糊精型色谱固定相的制备及在对映体分离与亲水色谱中的应用. 分析化学, 2018, 46(9): 1455-1463. doi: 10.11895/j.issn.0253-3820.181337 [复制]
Citation: LI Qiang, LI Yuan-Yuan, ZHU Nan, GAO Zhu-Xian, LI Tian-Jun, ZHOU Tong, MA Yu-Long. Preparation of Cyclodextrin Type Stationary Phase Based on Graphene Oxide and Its Application in Enantioseparation and Hydrophilic Chromatography. Chinese Journal of Analytical Chemistry, 2018, 46(9): 1455-1463. doi: 10.11895/j.issn.0253-3820.181337 [复制]
基于氧化石墨烯的环糊精型色谱固定相的制备及在对映体分离与亲水色谱中的应用
Preparation of Cyclodextrin Type Stationary Phase Based on Graphene Oxide and Its Application in Enantioseparation and Hydrophilic Chromatography
将氧化石墨烯(GO)通过酰胺键键合到氨基硅胶上,进一步将β-环糊精(β-CD)化学键合于GO上,制备了一种新型手性固定相材料,采用IR、SEM、TEM、元素分析和热重分析进行了表征。7种对映体得到不同程度的拆分,同时此固定相表现出典型的亲水作用色谱(HILIC)特征,4种核苷小分子在流动相为甲醇-乙腈-水(45:45:10,V/V)时得到分离。通过考察流动相组成、温度、pH值对分析物保留的影响,进一步探讨了该固定相的分离机理。在20~60℃时,温度越低越有利于分析物质分离;加入质子化溶剂甲醇,4种分析物的保留时间显著减弱;pH值的改变影响分析物的质子化程度进而改变与固定相作用力和保留时间。结果表明,此色谱固定相中GO和β-CD在手性拆分中具有协同作用,而在HILIC中分析物的保留归因于混合模式的保留机理,包括亲水作用、静电作用、氢键、π-π堆积作用等。
Graphene oxide (GO) was covalently coupled to the surface of amino silica gel by amide bond. β-Cyclodextrin (β-CD) was further chemically bonded to GO to prepare a novel chiral stationary phase. The resulting material was characterized by Fourier transform-infrared (FT-IR) spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis and thermogravimetric analysis (TGA). The separation of seven enantiomers was improved in varying degrees. At the same time, the stationary phase showed typical characteristics of hydrophilic interaction chromatography (HILIC), and four small nucleoside molecules were separated when the mobile phase was methanol-acetonitrile-water (45:45:10, V/V) in HILIC mode. In addition, the separation mechanism of the stationary phase was further explored by studying the effects of mobile phase composition, temperature, and pH on the analyte retention. The low temperature was conducive to the separation of analytes at 20-60℃. The addition of protonated solvent methanol significantly decreased retention time of the four analytes. The pH affected the degree of protonation of the analyte, the interaction among analytes and stationary phase, and retention time of analytes. The results showed that GO and β-CD played a synergistic effect in the chiral resolution of the chromatographic stationary phase. The retention of analytes in HILIC was attributed to their mixed-mode retention mechanisms including hydrophilic interactions, electrostatic interactions, hydrogen bonding, π-π stacking and so on.
[1] |
Shah R R, Midgley J M, Branch S K. Adverse Drug React. Toxicol. Rev., 1998, 17(2-3): 145-148 |
[2] |
Martínez-Girón A B, Marina M L, Crego A L. J. Chromatogr. A, 2016, 1467: 427-435. doi: 10.1016/j.chroma.2016.08.041 |
[3] |
Lorenz H, Seidel-Morgenstern A. Angew. Chem. Int. Edit., 2014, 53(5): 1218-1250. doi: 10.1002/anie.v53.5 |
[4] |
Li L W, Wu C J, Ma Y, Zhou S H, Li Z, Sun T M. Analyst, 2017, 142(19): 3699-3706. doi: 10.1039/C7AN00986K |
[5] |
Qiao L J, Zhou X H, Li X, Du W R, Yu A J, Zhang S S, Wu Y J. Talanta, 2017, 163: 94-101. doi: 10.1016/j.talanta.2016.10.090 |
[6] |
Bortocan R, Bonato P S. Electrophoresis, 2004, 25(16): 2848-2853. doi: 10.1002/(ISSN)1522-2683 |
[7] |
Nojavan S, Fakhari A R. Electrophoresis, 2011, 32(6-7): 764-771. doi: 10.1002/elps.v32.6/7 |
[8] |
Yu T, Du Y. Chen B. Electrophoresis, 2011, 32(14): 1898-1905. doi: 10.1002/elps.v32.14 |
[9] |
Kumar A P, Park J H. J. Chromatogr. A, 2011, 1218(31): 5369-5373. doi: 10.1016/j.chroma.2011.06.002 |
[10] |
Haginaka J. J. Chromatogr. B, 208, 875(1): 12-19 |
[11] |
Navarro-Sánchez J, Argente-García A I, Moliner-Martínez Y, Roca-Sanjuán D, Antypov D, Campíns-Falcó P, Rosseinsky M J, Martí-Gastaldo C. J. Am. Chem. Soc., 2017, 139(12): 4294-4297. doi: 10.1021/jacs.7b00280 |
[12] |
Han X, Huang J J, Yuan C, Liu Y, Cui Y. J. Am. Chem. Soc., 2018, 140(3): 892-895. doi: 10.1021/jacs.7b12110 |
[13] |
Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A. Angew. Chem. Int. Edit., 2010, 48(42): 7752-7777 |
[14] |
Ershova O V, Lillestolen T C, Bichoutskaia E. Phys. Chem. Chem. Phys., 2010, 12(24): 6483-6491. doi: 10.1039/c000370k |
[15] |
Sun Y, Yang S, Zhao G, Wang Q, Wang X. Chem. Asian J., 2013, 8(11): 2755-2761. doi: 10.1002/asia.v8.11 |
[16] |
Wang J, Chen Z, Chen B. Environ. Sci. Technol., 2014, 48(9): 4817-4825. doi: 10.1021/es405227u |
[17] |
ZHANG Wei-Bing, GAO Yu, PENG Li, ZHAO Yi-Man, LIU Hai-Yan. Chinese J. Anal. Chem., 2016, 44(6): 835-841 |
[18] |
Zhang X Q, Chen S, Han Q, Ding M Y. J. Chromatogr. A, 2013, 1307(17): 135-143 |
[19] |
Li X X, Yao X B, Xiao Y, Wang Y. Anal. Chim. Acta, 2017, 990: 174-184. doi: 10.1016/j.aca.2017.07.033 |
[20] |
Haiyee Z A, Saim N, Said M, Illias R M, Wan M W A, Hassan O. Food Chem., 2009, 114(2): 459-465. doi: 10.1016/j.foodchem.2008.09.072 |
[21] |
WU Zhi-Hua, ZHAO Jie, LI Shen, WANG Yong. Chinese J. Anal.Chem., 2016, 44(1): 95-102 |
[22] |
Varga G, Fodor G, Ilisz I, Szemán J, Visy J, Szente L, Péter A. J. Pharm. Biomed. Anal., 2012, 70: 71-76. doi: 10.1016/j.jpba.2012.05.023 |
[23] |
ZHOU Ren-Dan, LI Lai-Sheng, CHENG Biao-Ping, NIE Gui-Zhen, ZHANG Hong-Fu. Chinese J. Anal.Chem., 2014, 42(7): 1002-1009 |
[24] |
Li Y Y, Wei M M, Chen T, Zhu N, Ma Y L. Talanta, 2016, 160: 72-78. doi: 10.1016/j.talanta.2016.07.016 |
[25] |
Ikegami T, Tomomatsu K, Takubo H, Horie K, Tanaka N. J. Chromatogr. A, 2008, 1184(1-2): 474-503. doi: 10.1016/j.chroma.2008.01.075 |
[26] |
WU Cheng-Ling, LIU Jian-Fen, ZHANG Zhen-Qing. Chinese J. Anal. Chem., 2015, 43(8): 1198-1202 |
[27] |
ZHENG Si-Jia, WANG Qing-Qing, WANG Xiao-Lin, ZHAO Xin-Jie, XU Guo-Wang. Chinese J. Anal. Chem., 2017, 45(12): 1921-1929. doi: 10.11895/j.issn.0253-3820.171286 郑思佳, 王晴晴, 王晓琳, 赵欣捷, 许国旺. 分析化学, 2017, 45(12): 1921-1929. doi: 10.11895/j.issn.0253-3820.171286 |
[28] |
Tufi S, Lamoree M, De B J, Leonards P. J. Chromatogr. A, 2015, 1395: 79-87. doi: 10.1016/j.chroma.2015.03.056 |
[29] |
Niyogi S, Bekyarova E, Itkis M E, Mcwilliams J L, Hamon M A, Haddon R C. J. Am. Chem. Soc., 2006, 128(24): 7720-7721. doi: 10.1021/ja060680r |
[30] |
Cao Y, Wu S, Liang Y, Yu Y. J. Mol. Struct., 2013, 1031(5): 9-13 |
[31] |
Zhong Q Q, He L F, Beesley T E, Trahanovsky W S, Sun P, Wang C L, Armstrong D W. J. Chromatogr. A, 2006, 1115(1-2): 19-45. doi: 10.1016/j.chroma.2006.02.065 |
[32] |
Li Y Y, Li Q, Zhu N, Gao Z X, Ma Y L. Chirality, 2018, 30(6): 996-1004 |
[33] |
Yang F, Yang C X, Yan X P. Talanta, 2015, 137: 136-142. doi: 10.1016/j.talanta.2015.01.022 |
基于氧化石墨烯的环糊精型色谱固定相的制备及在对映体分离与亲水色谱中的应用
Preparation of Cyclodextrin Type Stationary Phase Based on Graphene Oxide and Its Application in Enantioseparation and Hydrophilic Chromatography
计量
- PDF下载量(25)
- 文章访问量(203)
- HTML全文浏览量(8)