首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   郑姗, 刘洋, 陈飘飘, 邢怡晨, 张伟波, 施娅颖, 黄朝表. 基于硫化镉量子点-二氧化钛复合材料的Hg2+光电化学生物传感器研究. 分析化学, 2019, 47(9): 1314-1320. doi:  10.19756/j.issn.0253-3820.181818 [复制]

Citation:   ZHENG Shan , LIU Yang , CHEN Piao-Piao , XING Yi-Chen , ZHANG Wei-Bo , SHI Ya-Ying , HUANG Chao-Biao . Photoelectrochemical Biosensor for Detection of Mercury(Ⅱ) Based on CdS Quantum Dots/TiO2 Composite Material. Chinese Journal of Analytical Chemistry, 2019, 47(9): 1314-1320. doi: 10.19756/j.issn.0253-3820.181818 [复制]

基于硫化镉量子点-二氧化钛复合材料的Hg2+光电化学生物传感器研究

收稿日期: 2018-12-29

基金项目: 本文系国家自然科学基金项目(No.21575129)资助

Photoelectrochemical Biosensor for Detection of Mercury(Ⅱ) Based on CdS Quantum Dots/TiO2 Composite Material

Received Date:  2018-12-29

Fund Project:  This work was supported by the National Natural Science Foundation of China (No.21575129).

以硫化镉量子点-二氧化钛(CdS QDs/TiO2)复合材料作为光电转换单元,构建了汞离子(Hg2+)光电化学(PEC)生物传感器。将两种不同带隙无机半导体CdS QDs和TiO2偶联以提高电极的性能,当用特定波长的光激发CdS QDs时,处于价带(VB)的电子(e-)跃迁至导带(CB),并在价带上产生空穴(h+)。由于TiO2的导带低于CdS QDs,激发态电子跃迁至TiO2,导致电子-空穴对(e--h+)的空间分离,有效抑制了它们的复合,从而提高了光电转换效率。利用两条互补的短链DNA构建了Hg2+传感器,其中一条富含T碱基的DNA单链因与Hg2+特异性结合形成T-Hg2+-T结构,无法与金纳米粒子标记的另一条DNA单链配对,进而抑制光电流的下降,实现了对Hg2+的灵敏检测。本方法的线性范围为1.0×10-10~1.5×10-7 mol/L,检出限为6.0×10-11 mol/L (S/N=3),灵敏度高,选择性好。

关键词:   光电化学, 汞离子, 生物传感器, 硫化镉量子点, 二氧化钛, 金纳米粒子
Key words:   Photoelectrochemical, Mercury ion (Ⅱ), Biosensor, CdS quantum dots, Titanium dioxide, Gold nanoparticles
[1]

Stanly J X, Selvakumar M S, Prem A D, Alphy P. Sciencia Acta Xaveriana,2013,4(1):103-110

[2]

Kong R M, Zhang X B, Zhang L L, Jin X Y, Huan S Y, Shen G L, Yu R Q. Chem. Commun.,2009,37:5633-5635

[3]

John G. J. Membrane Biol.,1981,61(1):61-66

[4]

Wu J, Jiang W, Deng A P, Shen Y W. Sens. Actuators B,2016,234:691-702

[5]

Fan L F, Zhang C Y, Shi H J, Zhao G H. Biosens. Bioelectron.,2019,124:8-14

[6]

Leopold K, Foulkes M, Worsfold P. Anal. Chim. Acta,2010,663(2):127-138

[7]

Deng M Y, Wang Y, Men G W, Shang H X, Jiang S M. Sens. Actuators B,2016,234:609-615

[8]

Gill R, Zayats M, Willner I. Angew. Chem. Int. Edit.,2008,47(40):7602-7625

[9]

Wei J, Xie X, Chang W W, Yang Z H, Liu Y J. Biosens. Bioelectron.,2018,176:180-188

[10]

Jia S P, Zhu S C, Liang M M, Guo L H. Environ. Sci. Technol.,2008,42(2):635-639

[11]

Zhang X R, Zhao Y Q, Li S G, Zhang S S. Chem. Commun.,2010,46(48):9173-9175

[12]

Ma Z Y, Ruan Y F, Zhang N, Zhao W W, Xu J J, Chen H Y. Chem. Commun.,2015,51(39):8381-8384

[13]

Zhao W W, Xu J J, Chen H Y. Chem. Commun.,2011,47(39):10990-10992

[14]

Tu W W, Lei J P, Wang P, Ju H X. Chemistry,2011,17(34):9440-9447

[15]

Zhao W W, Xu J J, Yu P P. Electrochem. Commun.,2011,13(5):495-497

[16]

Yan K, Wang R, Zhang J D. Biosens. Bioelectron.,2014,53:301-304

[17]

Tian J P, Zhao H M, Zhao H R, Quan X. Microchim. Acta,2012,179(1-2):163-170

[18]

Xia N, Hao Y Q, Zhao L J, Hou W J. Int. J. Electrochem. Sci., 2016,11(11):9462-9470

[19]

Zhao W W, Chen R, Dai P P, Li L X, Xu J J, Chen H Y. Anal. Chem.,2014,86(23):11513-11516

[20]

Zhao W W, Ma Z Y, Yan D Y, Xu J J, Chen H Y. Anal. Chem.,2012,82(24):10518-10521

[21]

Chaguetmi S, Mammeri F, Pasut M, Nowak S, Lecoq H, Decorse P, Costentin C, Achour S, Ammar S. J. Nanopart Res.,2013,15(12):2140-2149

[22]

Chen Y L, Chen Y H, Chen J W, Cao F R, Li L, Luo Z M, Leu I C, Pu Y C. ACS Appl. Mater. Interfaces,2019,11(8):8126-8137

[23]

Zhao W W, Xu J J, Chen H Y. Chem. Rev.,2014,114(15):7421-7441

[24]

Zhao W W, Wang J, Zhu Y C, Xu J J, Chen H Y. Anal. Chem.,2015,87(19):9520-9531

[25]

Zhu Y C, Xu F, Zhang N, Zhao W W, Xu J J, Chen H Y. Biosens. Bioelectron.,2017,91:293-298

[26]

Xin Y M, Li Z Z, Wu W L, Fu B H, Wu H J, Zhang Z H. Biosens. Bioelectron.,2017,87:396-403

[27]

Hao Y Q, Cui Y L, Qu P, Sun W Z, Liu S P, Zhang Y T. Electrochim. Acta,2018,259:179-187

[28]

Han D M, Jiang L Y, Tang W Y, Xu J J, Chen H Y. Electrochem. Commun.,2015,51:72-75

[29]

Du F Y, Sun L S, Zen Q L, Tan W, Cheng Z F, Ruan G F, Li J P. Sens. Actuators B,2019,288:96-103

[30]

Zhang C H, Zhang H H, Li M, Zhou Y, Zhang G M, Shi L H, Yao Q J, Shuang S M, Dong C. Talanta,2019,197:218-224

[31]

Li Q, Peng K, Lu Y Z, Li A, Che F F, Liu Y Y, Xi X J, Chu Q, Lan T, Wei Y. J. Mater. Chem. B,2018,6(48):8214-8220

[32]

Yang X F, Qin X J, Li Y X, Yan M, Cui Y, Sun G X. Biosens. Bioelectron.,2018,121:62-71

[33]

Singh G, Sanchita, Singh A, Sharma G, Kalra P, Satija P, Diksha, Soni S, Verma V. Inorg. Chim. Acta,2019,490:85-92

[34]

Wang Q M, Jin L, Wang W L, Hu T X, Chen C. J. Lumin.,2019,209:411-419

[35]

Ma X Q, Wang Y, Wei T B, Qi L H, Jiang X M, Ding J D, Zhu W B, Yao H, Zhang Y M, Lin Q. Dyes Pigments,2019,164:279-286

[36]

Xu S, Zhang Y Q, Li X P, Zhang J S, Sun J S, Cheng L H, Chen B J. J. Rare Earths,2017,35(5):460-468

[37]

Bahareh B, Abdollah S, Rahman H. Biosens. Bioelectron.,2018,102:328-335

[38]

Huang J H, Gao X, Jia J J, Kim J K, Li Z G. Anal. Chem.,2014,86(6):3209-3215

[39]

Zhao M, Fan G C, Chen J J, Shi J J, Zhu J J. Anal. Chem.,2015,87(24):12340-12347

计量
  • PDF下载量(40)
  • 文章访问量(355)
  • HTML全文浏览量(9)

目录

基于硫化镉量子点-二氧化钛复合材料的Hg2+光电化学生物传感器研究

郑姗, 刘洋, 陈飘飘, 邢怡晨, 张伟波, 施娅颖, 黄朝表

Figures and Tables