首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   张滕, 仲逸涵, 张守婷, 党昕宇, 卢小泉. 基于金纳米颗粒的表面等离子体共振效应可视化检测Cr3+. 分析化学, 2019, 47(9): 1373-1381. doi:  10.19756/j.issn.0253-3820.191306 [复制]

Citation:   ZHANG Teng , ZHONG Yi-Han , ZHANG Shou-Ting , DANG Xin-Yu , LU Xiao-Quan . A Sensitive Colorimetric Method for Detection of Chromium Ion(Ⅲ) Based on Surface Plasmon Resonance Effect of Gold Nanoparticles. Chinese Journal of Analytical Chemistry, 2019, 47(9): 1373-1381. doi: 10.19756/j.issn.0253-3820.191306 [复制]

基于金纳米颗粒的表面等离子体共振效应可视化检测Cr3+

收稿日期: 2019-05-25

基金项目: 本文系国家自然科学基金项目(Nos.21575115,21705117)资助

A Sensitive Colorimetric Method for Detection of Chromium Ion(Ⅲ) Based on Surface Plasmon Resonance Effect of Gold Nanoparticles

Received Date:  2019-05-25

Fund Project:  This coork was supported by the National Natural Science Foundation of China (Nos. 21575115, 21705117).

建立了一种基于柠檬酸修饰的金纳米颗粒(CA-AuNPs)高选择性可视化检测水中痕量Cr3+的方法。用原位还原法在不同pH条件下制备CA-AuNPs,加入痕量Cr3+后,Cr3+与AuNPs表面的柠檬酸根发生螯合作用,使CA-AuNPs发生定向团聚。不同pH条件下制备的CA-AuNPs体系均可发生肉眼可见的颜色变化,由红色变为灰色或无色,加入其它金属离子(Na+、Ca2+、Co2+、Zn2+、Cu2+、Fe2+、Mg2+、Al3+、Fe3+)则无明显的变化。pH=6的条件下合成的CA-AuNPs最稳定,性能最佳,裸眼比色法的检出限为1.0×10-5 mol/L,紫外-可见吸收光谱法的检出限为40.7 nmol/L,低于国家生活饮用水卫生标准的限量值。建立的基于CA-AuNPs体系的可视化传感器检出限低,选择性好,在药物分析、临床诊断和环境监测等领域具有良好的应用前景。

关键词:   表面等离子体共振, 金纳米颗粒, 铬离子(Ⅲ), 可视化检测
Key words:   Surface plasmon resonance, Gold nanoparticles, Trivalent chromium ions, Visualization
[1]

Owlad M, Aroua M K, Daud W A W, Baroutian S. Water Air Soil Pollut., 2009,200(1-4):59-77

[2]

Costa M, Klein C B. Crit. Rev. Toxicol., 2006,36(2):155-163

[3]

Hassanien M M, Kenawy I M, El-Menshawy A M, El-Asmy A A. J. Hazard. Mater., 2008,158(1):170-176

[4]

Dang Y Q, Li H W, Wang B, Li L, Wu Y. ACS Appl. Mater. Interfaces,2009,1(7):1533-1538

[5]

Yu Y, Hong Y, Wang Y, Sun X, Liu B. Sens.Actuators B, 2017,239:865-873

[6]

Chen Y C, Lee I L, Sung Y M, Wu S P. Sens. Actuators B,2013,188:354-359

[7]

Mahato P, Saha S, Suresh E, Liddo R, Parnigotto P P, Conconi M T. Inorg. Chem.,2012, 51(3):1769-1777

[8]

Kostas V, Baikousi M, Dimos K, Vasilopoulos K C, Koutselas I, Karakassides M A. J. Phys. Chem. C,2017,121(13):7303-7311

[9]

Unceta N, Séby F, Malherbe J, Donard O F X. Anal. Bioanal. Chem.,2010,397(3):1097-1111

[10]

Adhikari S, Ta S, Ghosh A, Guria S, Pal A, Ahir M, Das D. J. Photochem. Photobiol. A,2019, 372:49-58

[11]

Kachoosangi R T, Compton R G. Sens. Actuators B,2013,178:555-562

[12]

Chen M, Cai H H, Yang F, Lin D, Yang P H, Cai J. Spectrochim. Acta A,2014,118:776-781

[13]

Moghadam M R, Dadfarnia S, Shabani A M H. J.Hazard. Mater.,2011,186(1):169-174

[14]

Cheng G, He M, Peng H, Hu B. Talanta,2012,88:507-515

[15]

Sumida T, Ikenoue T, Hamada K, Sabarudin A, Oshima M, Motomizu S. Talanta,2005,68(2):388-393

[16]

Kachoosangi R T, Compton R G. Sens. Actuators B, 2013,178:555-562

[17]

Zheng L, Yu H, Yue Y. ACS Appl. Mater. Interfaces,2017,9(13):11798-11802

[18]

Zheng L, Yu H L, Yue Y L, Wu F J, He Y. ACS Appl. Mater. Interfaces, 2017,9(13):11798-11802

[19]

Zhang S T, Zhang Z Y, Lu X Q. Chem. Commun.,2017,53:5056-5058

[20]

Saha K, Agasti A S, Kim C, Li X N, Rotello V M. Chem. Rev.,2012,112(5):2739-2779

[21]

Fu X, Cheng Z, Yu J, Choo P, Chen L, Choo J. Biosens. Bioelectron., 2016,78:530

[22]

Jin W, Huang P, Chen Y J, Wu F Y, Wan Y Q. J. Nanoparticle Res.,2015,17(9):UNSP358

[23]

Dang Y Q, Li H W, Wang B. ACS Appl. Mater. Interfaces,2009,1(7):1533-1538

[24]

Li X, Li S Q, Liu Q Y. Anal. Chem.,2019,91(9):6315-6320

[25]

Reetz M T, Helbig W, Quaiser S A, Stimming U, Breuer N, Vogel R. Science,1995,267(5196):367-369

[26]

Smith D K, Korgel B A. Langmuir,2008,24(3):644-649

[27]

Frens G. Nat. Phys. Sci.,1973,241(105):20-22

[28]

Zhang X H, Liu W, Zhang S T, Lu X Q. Anal. Chem.,2018,90(24):14309-14315

[29]

Li X M, Zhang S T, Dang Y F, Liu Z Y, Shan D L, Zhang X H, Wang T S, Lu X Q. Anal. Chem.,2019,91(6):4031-4038

[30]

Al-Johani H, Abou-Hamad E, Jedidi A, Widdifield C M, Viger-Gravel J, Sangaru S S, Gajan D, Anjum D H, Ould-Chikh S, Hedhili M N, Gurinov A, Kelly M J, El Eter M, Cavallo L, Emsley L, Basset J M. Nat. Chem.,2017,9(9):890-895

[31]

Gabriel C, Raptopoulou C P, Terzis A, Tangoulis V, Mateescu C, Salifoglou A. Inorg. Chem.,2007,46(8):2998-3009

[32]

Ravindran A, Elavarasi M, Prathna T C, Raichur A M, Chandrasekaran N, Mukherjee A. Sens. Actuators B,2012,166:365-371

计量
  • PDF下载量(41)
  • 文章访问量(219)
  • HTML全文浏览量(5)

目录

基于金纳米颗粒的表面等离子体共振效应可视化检测Cr3+

张滕, 仲逸涵, 张守婷, 党昕宇, 卢小泉

Figures and Tables