首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   王颖琦, 陈瑶, 陈增萍. 波谱形变定量理论结合核壳型颗粒用于生物样本中6-硫鸟嘌呤的检测. 分析化学, 2020, 48(2): 269-274. doi:  10.19756/j.issn.0253-3820.191400 [复制]

Citation:   WANG Ying-Qi , CHEN Yao , CHEN Zeng-Ping . Quantification of 6-Thioguanine in Biological Samples by Spectral Shape Deformation Quantitative Theory Combined with Core-shell Nanoparticles. Chinese Journal of Analytical Chemistry, 2020, 48(2): 269-274. doi: 10.19756/j.issn.0253-3820.191400 [复制]

波谱形变定量理论结合核壳型颗粒用于生物样本中6-硫鸟嘌呤的检测

收稿日期: 2019-07-13

基金项目: 本文系国家自然科学基金项目(Nos.21705044,21775038)和湖南省自然科学基金项目(No.2018JJ3114)资助

Quantification of 6-Thioguanine in Biological Samples by Spectral Shape Deformation Quantitative Theory Combined with Core-shell Nanoparticles

Received Date:  2019-07-13

Fund Project:  This work was supported by the National Natural Science Foundation of China (Nos. 21705044, 21775038) and the Natural Science Foundation of Hunan Province, China (No. 2018JJ3114).

制备了Au-core@4-巯基苯甲酸@Ag-shell核壳型纳米颗粒,结合波谱形变定量分析理论,采用表面增强拉曼光谱(SERS)定量分析了尿液和红细胞样本中6-硫鸟嘌呤(6-TG)。实验结果表明,核壳型纳米颗粒和波谱形变定量分析理论相结合可以有效消除SERS增强基底表面的"热点"数目及其分布等因素的变化对SERS信号的乘子效应影响,从而实现尿液和红细胞样本中6-TG的灵敏、准确定量分析。本方法对6-TG的检出限(3σ)和定量限(10σ)分别为1 nmol/L和3 nmol/L,加标回收率在95.6%~106.7%之间。相较于传统的6-TG分析方法(如高效液相色谱法),本方法具有简单、灵敏、快速等优点,为复杂体系中6-TG的常规定量分析提供了参考。

关键词:   表面增强拉曼光谱, 6-硫鸟嘌呤, 核壳型纳米颗粒, 波谱形变定量分析理论
Key words:   Surface enhanced Raman spectroscopy, 6-Thioguanine, Core-shell nanoparticles, Spectral shape deformation quantitative theory
[1]

Harms D O, Janka-Schaub G E. Leukemia,2000,14(12):2234-2239

[2]

Hawwa A F, Millership J S, Collier P S, McElnay J C. J. Pharm. Biomed. Anal., 2009, 49(2):401-409

[3]

Al-Ghobashy M A, Hassan S A, Abdelaziz D H, Elhosseiny N M, Sabry N A, Attia A S, El-Sayed M H. J. Chromatogr. B, 2016, 1038:88-94

[4]

Unal D N, Eksin E, Erdem A. Anal. Lett., 2018, 51(1-2):265-278

[5]

Zeng H, Li L, Ding Y, Zhuang Q. Talanta, 2018, 178:879-885

[6]

Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R, Feld M S. Phys. Rev. Lett., 1997, 78(9):1667-1670

[7]

Lorén A, Engelbrektsson J, Eliasson C, Josefson M, Abrahamsson J, Johansson M, Abrahamsson K. Anal. Chem., 2004, 76(24):7391-7395

[8]

Chen Z P, Xiong S, Zuo Q, Shi C X. J. Chemometr., 2018, 32(11):e2913

[9]

Chen Y, Chen Z P, Zuo Q, Shi C X, Yu R Q. Anal. Chim. Acta, 2015, 887:45-50

[10]

Chen Y, Chen Z P, Jin J W, Yu R Q. Chemometr. Intell. Lab. Syst., 2015, 142:166-171

[11]

Xia T H, Chen Z P, Chen Y, Jin J W, Yu R Q. Anal. Methods, 2014, 6(7):2363-2370

[12]

Chen Y, Chen Z P, Long S Y, Yu R Q. Anal. Chem., 2014, 86(24):12236-12242

[13]

Zhang X Q, Li S X, Chen Z P, Chen Y, Yu R Q. Chemometr. Intell. Lab. Syst., 2018, 177:47-54

[14]

Frens G. Nat. Phys. Sci., 1973, 241(105):20-22

[15]

Feng Y, Wang Y, Wang H, Chen T, Tay Y Y, Yao L, Yan Q, Li S, Chen H. Small, 2012, 8(2):246-251

[16]

Ma W, Fang Y, Hao G, Wang W. Chin. J. Chem. Phys., 2010, 23(6):659-663

[17]

Cordes M M, Walter J L. Spectrochim. Acta A, 1968, 24(9):1421-1435

[18]

Giese B, McNaughton D. Biopolymers, 2003, 72(6):472-489

[19]

Szeghalmi A V, Leopold L, Pinzaru S, Chis V, Silaghi-Dumitrescu I, Schmitt M, Popp J, Kiefer W. Biopolymers, 2005, 78(6):298-310

[20]

Jin J W, Chen Z P, Li L M, Steponavicius R, Thennadil S N, Yang J. Anal. Chem., 2011,84(1):320-326

[21]

Geladi P, Kowalski B R. Anal. Chim. Acta, 1986, 185:1-17

计量
  • PDF下载量(26)
  • 文章访问量(547)
  • HTML全文浏览量(0)

目录

波谱形变定量理论结合核壳型颗粒用于生物样本中6-硫鸟嘌呤的检测

王颖琦, 陈瑶, 陈增萍

Figures and Tables