首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   陈炜, 雷和花, 宋涛, 张利民, 雷皓. 小鼠脑代谢物活体磁共振波谱分析及与离体样本磁共振波谱与质谱定量分析的比较研究. 分析化学, 2019, 47(10): 1671-1679. doi:  10.19756/j.issn.0253-3820.191439 [复制]

Citation:   CHEN Wei , LEI He-Hua , SONG Tao , ZHANG Li-Min , LEI Hao . Quantitative Analysis of Cerebral Metabolites in Mice by in Vivo 1H-MRS and Comparison of Detection Results of Tissue Extracts Obtained by 1H-NMR and UHPLC-MS/MS. Chinese Journal of Analytical Chemistry, 2019, 47(10): 1671-1679. doi: 10.19756/j.issn.0253-3820.191439 [复制]

小鼠脑代谢物活体磁共振波谱分析及与离体样本磁共振波谱与质谱定量分析的比较研究

通讯作者:  雷皓, leihao@wipm.ac.cn

收稿日期: 2019-07-24

基金项目: 本文系国家自然科学基金项目(Nos.21790390,21790392)和王宽诚基金会资助

Quantitative Analysis of Cerebral Metabolites in Mice by in Vivo 1H-MRS and Comparison of Detection Results of Tissue Extracts Obtained by 1H-NMR and UHPLC-MS/MS

Corresponding author:  LEI Hao , leihao@wipm.ac.cn

Received Date:  2019-07-24

Fund Project:  This work was supported by the National Natural Science Foundation of China (Nos.21790390, 21790392).

以水为内标的活体质子磁共振波谱(1H-MRS)可非侵入性、原位、同时、定量分析多种脑代谢物的浓度,在临床神经/精神疾病诊断、疗效评估及相关基础研究中得到广泛应用。为验证以水为内标的活体1H-MRS定量分析的准确性,本研究采集了小鼠纹状体和内侧前额叶脑区的活体1H-MRS,测定了N-乙酰基天冬氨酸(NAA)、谷氨酸(Glu)、牛磺酸(Tau)、谷氨酰胺(Gln)和谷胱甘肽(GSH)这5种代谢物的绝对浓度;随后采集对应脑区的组织样本,经萃取后用液体核磁共振波谱(1H-NMR)和超高效液相色谱-串联质谱联用(UHPLC-MS/MS)法定量分析上述代谢物。经统计比较发现:3种方法所测得的NAA、Glu和Tau的绝对浓度无显著差异,且与文献报道一致,提示活体1H-MRS定量分析具有与离体分析基本一致的准确性。活体1H-MRS和脑组织萃取样本1H-NMR定量分析所得的Gln和GSH的绝对浓度无显著差异。UHPLC-MS/MS测得的Gln和GSH浓度与磁共振方法所得的结果显著不同,这可能是在样品前处理、离子化或定量过程中引入了系统误差所致。本研究初步验证了联合运用活体1H-MRS和离体磁共振/质谱方法对同一脑区中多种代谢物进行同步定量分析的可行性。

关键词:   质子磁共振波谱, 活体分析, 超高效液相色谱-串联质谱, 绝对定量, 内标准
Key words:   1H-magnetic resonance spectroscopy, In vivo analysis, Ultrahigh performance liquid chromatography tandem mass spectrometry, Absolute quantification, Internal standard
[1]

Duarte J M N, Lei H, Mlynárik V, Gruetter R. Neuroimage, 2012, 61(2):342-362

[2]

Mitolo M, Stanzani-Maserati M, Capellari S, Testa C, Rucci P, Poda R, Oppi F, Gallassi R, Sambati L, Rizzo G, Parchi P, Evangelisti S, Talozzi L, Tonon C, Lodi R, Liguori R. Neuroimage Clin., 2019, 23:101843

[3]

Mohajeri S, Bezabeh T, Ijare O B, King S B, Thomas M A, Minuk G, Lipschitz J, Kirkpatrick I, Micflikier A B, Summers R, Smith I C P. NMR Biomed., 2019, 32(5):e4065

[4]

Guan J, Rong Y, Wen Y, Wu H, Qin H, Zhang Q, Chen W. Brain Behav., 2017, 7(9):e00792

[5]

Pepin J, Francelle L, Carrillo-De Sauvage M A, De Longprez L, Gipchtein P, Cambon K, Valette J, Brouillet E, Flament J. Neuroimage, 2016, 139:53-64

[6]

Zhang H, Zou Y, Lei H. NMR Biomed., 2019, 32(1):e4024

[7]

Li B S Y, Wang H, Gonen O. Magn. Reson. Imaging, 2003, 21(8):923-928

[8]

Goldenberg J M, Pagel M D. NMR Biomed., 2018, e3943

[9]

Carlson H L, Macmaster F P, Harris A D, Kirton A. Hum. Brain Mapp., 2017, 38(3):1574-1587

[10]

Christiansen P, Henriksen O, Stubgaard M, Gideon P, Larsson H B W. Magn. Reson. Imaging, 1993, 11(1):107-118

[11]

Soher B J, Hurd R E, Sailasuta N, Barker P B. Magn. Reson. Med., 1996, 36(3):335-339

[12]

Brief E E, Moll R, Li D K B, Mackay A L. NMR Biomed., 2009, 22(3):349-354

[13]

Morgan J J, Kleven G A, Tulbert C D, Olson J, Horita D A, Ronca A E. NMR Biomed., 2013, 26(6):683-691

[14]

Zhang X, Liu H, Wu J, Zhang X, Liu M, Wang Y. Neurochem. Int., 2009, 54(8):481-487

[15]

Durani L W, Hamezah H S, Ibrahim N F, Yanagisawa D, Makpol S, Damanhuri H A, Tooyama I. Biochem. Biophys. Res. Commun., 2017, 493(3):1356-1363

[16]

Yamamoto T, Isobe T, Akutsu H, Masumoto T, Ando H, Sato E, Takada K, Anno I, Matsumura A. Magn. Reson. Imaging, 2015, 33(5):644-648

[17]

Thac I, Starcuk Z, Choi I Y, Gruetter R. Magn. Reson. Med., 1999, 41(4):649-656

[18]

Provencher S W. NMR Biomed., 2001, 14(4):260-264

[19]

Tkac I, Dubinsky J M, Keene C D, Gruetter R, Low W C. J. Neurochem., 2007, 100(5):1397-1406

[20]

Weiss K, Melkus G, Jakob P M, Faber C. Magn. Reson. Mater. Phy., 2009, 22(1):53-62

[21]

Tkac I, Henry P G, Andersen P, Keene C D, Low W C, Gruetter R. Magn. Reson. Med., 2004, 52(3):478-484

[22]

Zacharoff L, Tkac I, Song Q, Tang C, Bolan P J, Mangia S, Henry P-G, Li T, Dubinsky J M. J. Cereb. Blood Flow Metab., 2012, 32(3):502-514

[23]

Chang C, Jang T C. J. Neurochem., 1995, 65(3):1192-1198

[24]

Bagga P, Patel A B. Neurochem. Int., 2012, 60(2):177-185

[25]

Chassain C, Bielicki G, Durand E, Lolignier S, Essafi F, Traore A, Durif F. J. Neurochem., 2008, 105(3):874-882

[26]

Govind V, Young K, Maudsley A A. NMR Biomed., 2015, 28(7):923-924

[27]

Kim T H, Choi J, Kim H G, Kim H R. J. Anal. Methods Chem., 2014, 2014:506870

[28]

Delafiori J, Ring G, Furey A. Talanta, 2016, 153:306-331

[29]

Kulak A, Duarte J M, Do K Q, Gruetter R. J. Neurochem., 2010, 115(6):1466-1477

[30]

Bergh M S, Bogen I L, Lundanes E, Oiestad A M L. J. Chromatogr. B, 2016, 1028:120-129

[31]

Bathena S P, Huang J, Epstein A A, Gendelman H E, Boska M D, Alnouti Y. J. Chromatogr. B, 2012, 893:15-20

[32]

Tzika A A, Cheng L L, Goumnerova L, Madsen J R, Zurakowski D, Astrakas L G, Zarifi M K, Scott R M, Anthony D C, Gonzalez R G, Black P M. J. Neurosurg., 2002, 96(6):1023-1031

[33]

Kim S, Lee H, Kim H, Bang E, Lee S, Lee D, Woo D, Choi C, Hong K S, Lee C, Choe B Y. NMR Biomed., 2011, 24(10):1235-1242

[34]

Matuszewski B K, Constanzer M L, Chavez-Eng C M. Anal. Chem., 2003, 75(13):3019-3030

[35]

Van De Steene J C, Lambert W E. J. Am. Soc. Mass Spectosc., 2008, 19(5):713-718

[36]

Bujak R, Struck-Lewicka W, Markuszewski M J, Kaliszan R. J. Pharm. Biomed. Anal., 2015, 113:108-20

[37]

Takach E, O'shea T, Liu H. J. Chromatogr. B, 2014, 964:180-190

[38]

Wang J, Zhou L, Lei H, Hao F, Liu X, Wang Y, Tang H. Sci. Rep., 2017, 7(1):1423

[39]

Menzie J, Pan C, Prentice H, Wu J Y. Amino. Acids, 2014, 46(1):31-46

[40]

Nam S Y, Kim H M, Jeong H J. Life Sci., 2017, 184:18-24

[41]

Li X W, Gao H Y, Liu J. Nutr. Neurosci., 2017, 20(7):409-415

[42]

Pasantes-Morales H, Hernandez-Benitez R. Neurochem. Res., 2010, 35(12):1939-1943

计量
  • PDF下载量(21)
  • 文章访问量(176)
  • HTML全文浏览量(3)

目录

小鼠脑代谢物活体磁共振波谱分析及与离体样本磁共振波谱与质谱定量分析的比较研究

陈炜, 雷和花, 宋涛, 张利民, 雷皓

Figures and Tables