首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   巢静波, 王静如, 张靖其. 基于单颗粒电感耦合等离子体质谱技术的金纳米颗粒准确测定和表征. 分析化学, 2020, 48(7): 946-954. doi:  10.19756/j.issn.0253-3820.191740 [复制]

Citation:   CHAO Jing-Bo , WANG Jing-Ru , ZHANG Jing-Qi . Accurate Determination and Characterization of Gold Nanoparticles Based on Single Particle-Inductively Coupled Plasma-Mass Spectrometry. Chinese Journal of Analytical Chemistry, 2020, 48(7): 946-954. doi: 10.19756/j.issn.0253-3820.191740 [复制]

基于单颗粒电感耦合等离子体质谱技术的金纳米颗粒准确测定和表征

通讯作者:  巢静波, chaojb@nim.ac.cn

收稿日期: 2019-12-14

基金项目: 本文系国家重点研发计划(No.2017YFF0205801)和中国计量科学研究院基本科研业务费(21-AKYS1609)资助

Accurate Determination and Characterization of Gold Nanoparticles Based on Single Particle-Inductively Coupled Plasma-Mass Spectrometry

Corresponding author:  CHAO Jing-Bo , chaojb@nim.ac.cn

Received Date:  2019-12-14

Fund Project:  This work was supported by the National Key Research and Development Project of China (No.2017YFF0205801) and the NIM Fundamental Research Program (No. 21-AKYS1609).

建立了基于单颗粒电感耦合等离子体质谱(SP-ICP-MS)技术的金纳米颗粒(AuNPs)数量浓度和粒径的准确测定方法,考察了传输效率计算方式、驻留时间、稀释试剂、进样方式等对测定结果的影响。传输效率对结果准确度影响较大,应根据测量目标参数选择传输效率计算方式,并在测定过程中保持传输效率的稳定,利用校准标准对其进行校正。驻留时间的选择直接影响结果的精确程度,应根据样品类型、粒径等性质慎重选择数据处理模式。当驻留时间为0.1 ms时,检测30 nm和60 nm AuNPs的线性范围分别为2~40 pg/g和10~200 pg/g,线性相关系数大于0.9998,数量浓度测定结果的相对标准偏差小于3.80%,颗粒数量浓度和粒径的检出限分别为110 NPs/g和9 nm。对合成的4种AuNPs和国际比对样品分别进行了测定,国际比对样品颗粒数量浓度结果与比对参考值偏差<5%,测定结果等效一致,扩展不确定度<15%(k=2),进一步验证了本方法的准确度和适用性。

关键词:   颗粒数量浓度, 粒径, 金纳米颗粒, 单颗粒-电感耦合等离子体质谱法
Key words:   Particle number concentration, Particle size, Gold nanoparticles, Single particle inductively coupled plasma mass spectrometry
[1]

Alkilany A M, Murphy C J. J. Nanopart. Res.,2010,12(7):2313-2333

[2]

Balasubramanian S K, Jittiwat J, Manikandan J, Ong C N, Yu L E, Ong W Y. Biomaterials,2010,31(8):2034-2042

[3]

Barreto A, Luis L G, Pinto E, Almeida A, Paiga P, Santos L, Delerue-Matos C, Trindade T, Soares A, Hylland K, Loureiro S, Oliveira M. Chemosphere,2019,220:11-19

[4]

Klaine S J, Alvarez P J J. Environ. Toxicol. Chem., 2008,27(9):1825-1851

[5]

2011/696/EU, Commission Recommendation of 18 October 2011 on the Definition of Nanomaterial. Official Journal of the European Union

[6]

Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products, Official Journal of the European Union

[7]

Meermann B, Nischwitz V. J. Anal. At. Spectrom.,2018,33(9):1432-1468

[8]

Laborda F, Jiménez-Lamana J, Bolea E, Castillo J R. J. Anal. At. Spectrom.,2011,26(7):1362-1371

[9]

Costa-Fernández J M, Menéndez-Miranda M, Bouzas-Ramos D, Encinar J R, Sanz-Medel A. TrAC-Trends Anal. Chem.,2016,84:139-148

[10]

Degueldre C, Favarger P Y. Colloids Surf. A,2003,217(1-3):137-142

[11]

Donovan A R, Adams C D, Ma Y, Stephan C, Eichholz T, Shi H. Chemosphere, 2016,144:148-153

[12]

Lu P J, Fang S W, Cheng W L, Huang S C, Huang M C, Cheng H F. J. Food Drug Anal.,2018,26(3):1192-1200

[13]

Stefan W, Ruud P, Katrin L, Ringo G, Thomas P J L. Anal. Bioanal. Chem.,2017,409:4839-4848

[14]

Thomas P J L, Ruud P, Stefan W. Anal. Bioanal. Chem.,2014,406:3835-3843

[15]

Antonio R M B, Elijah J R, Antonio P, Michael R W. Anal. Chem.,2015,87:8809-8817

[16]

Bastús N G, Comenge J, Puntes V. Langmuir,2011,27(17):11098-11105

[17]

Pace H E, Rogers N J, Jarolimek C, Coleman V A, Higgins C P, Ranville J F. Anal. Chem.,2011, 83(24):9361-9369

[18]

Montaño M D, Olesik J W, Barber A G, Challis K, Ranville J F. Anal. Bioanal. Chem., 2016,408(19):5053-5074

[19]

Abad-Alvaro I, Pena-Vazquez E, Bolea E, Bermejo-Barrera P, Castillo J R, Laborda F. Anal. Bioanal. Chem., 2016,408(19):5089-5097

[20]

Mitrano D M, Lesher E K, Bednar A, Monserud J, Higgins C P, Ranville J F. Environ. Toxicol. Chem., 2012,31(1):115-121

[21]

Laborda F, Jiménez-Lamana J, Bolea E, Castillo J R. J. Anal. At. Spectrom., 2013,28(8):1220-1232

计量
  • PDF下载量(23)
  • 文章访问量(116)
  • HTML全文浏览量(3)

目录

基于单颗粒电感耦合等离子体质谱技术的金纳米颗粒准确测定和表征

巢静波, 王静如, 张靖其

Figures and Tables