首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   袁敏, 王梦雪, 郑玉竹, 曹慧, 徐斐, 叶泰, 于劲松. 基于核酸适配体和金纳米颗粒的荧光比色双模式检测As(Ⅲ). 分析化学, 2021, 49(1): 76-84. doi:  10.19756/j.issn.0253-3820.201180 [复制]

Citation:   YUAN Min , WANG Meng-Xue , Zheng Yu-Zhu , CAO Hui , XU Fei , YE Tai , YU Jin-Song . Aptamer/Gold Nanoparticles-based Fluorometric and Colorimetric Dual-Mode Detection of Arsenite. Chinese Journal of Analytical Chemistry, 2021, 49(1): 76-84. doi: 10.19756/j.issn.0253-3820.201180 [复制]

基于核酸适配体和金纳米颗粒的荧光比色双模式检测As(Ⅲ)

通讯作者:  徐斐, xufei8135@126.com

收稿日期: 2020-04-05

基金项目: 国家自然科学基金项目(Nos.31671934,61501295)、科技部十三五计划项目(No.2017YFC1600603)和上海市科委重点攻关项目(Nos.18391901200,17391901500)资助。

Aptamer/Gold Nanoparticles-based Fluorometric and Colorimetric Dual-Mode Detection of Arsenite

Corresponding author:  XU Fei , xufei8135@126.com

Received Date:  2020-04-05

Fund Project:  Supported by the National Natural Science Foundation of China (Nos. 31671934, 61501295), the Ministry of Science and Technology of China (No. 2017YFC1600603), and the Project of Shanghai Committee of Science and Technology (Nos.18391901200, 17391901500).

基于金纳米颗粒(AuNPs)对荧光基团的荧光共振能量转移和其自身独特的光学效应,结合高亲和力和高特异性的核酸适配体,建立了一种荧光和比色双模式检测As(Ⅲ)的方法。将荧光基团修饰的As(Ⅲ)特异的核酸适配体(FAM-Apt)吸附在未修饰的AuNPs表面,FAM-Apt与AuNPs之间发生荧光共振能量转移,导致荧光猝灭。体系中存在As(Ⅲ)时,As(Ⅲ)与FAM-Apt结合,使FAM-Apt从AuNPs表面释放,荧光增强;同时,失去FAM-Apt保护的AuNPs在盐溶液中发生聚集,溶液由红色变为蓝灰色,因此可以通过荧光和比色双模式进行As(Ⅲ)的检测。荧光强度和吸光度比值的变化分别与As(Ⅲ)浓度呈良好的线性关系,荧光法的线性检测范围为5~800 μmol/L,检出限为3.64 μmol/L(3σ);比色法的线性检测范围为5~100 μmol/L,检出限为3.42 μmol/L(3σ);两种模式综合后的线性检测范围为5~1000 μmol/L,检出限为1.55 μmol/L(3σ)。本方法简单、快速、易操作,两种检测模式可以相互验证和联合使用,并成功用于检测果蔬中的As(Ⅲ),为其它生物小分子、金属离子和蛋白质的检测提供了一种基于核酸适配体的通用方法。

关键词:   三价无机砷, 核酸适配体, 金纳米颗粒, 荧光, 比色, 双模式检测
Key words:   Arsenite (Ⅲ), Aptamer, Gold nanoparticles, Fluorescence, Colorimetric, Dual-mode detection
[1]

PENA-PEREIRA F, VILLAR-BLANCO L, LAVILLA I, BENDICHO C. Anal. Chim. Acta, 2018, 1011:1-10.

[2]

SCHNEIDER M, CADORIM H R, WELZ B, CARASEK E, FELDMANN J. Talanta, 2018, 188:722-728.

[3]

MAO X, QI Y, HUANG J, LIU J, CHEN G, NA X, WANG M, QIAN Y. Anal. Chem., 2016, 88(7):4147-4152.

[4]

STIBOLLER M, RABER G, GJENGEDAL E L F, EGGESBO M, FRANCESCONI K A. Anal. Chem., 2017, 89(11):6266-6272.

[5]

KAUR H, KUMAR R, BABU J N, MITTAL S. Biosens. Bioelectron., 2015, 63:533-545.

[6]

LV X, ZHANG Y F, LIU G F, DU L Y, WANG S H. RSC Adv., 2017, 7(27):16290-16294.

[7]

TAN D D, HE Y, XING X J, ZHAO Y, TANG H W, PANG D W. Talanta, 2013, 113:26-30.

[8]

BABAEI M, JALALIAN S H, BAKHTIARI H, RAMEZANI M, ABNOUS K, TAGHDISI S M. Aust. J. Chem., 2017, 70(6):718-723.

[9]

ZHU Y F, WANG Y S, ZHOU B, YU J H, PENG L L, HUANG Y Q, LI X J, CHEN S H, TANG X, WANG X F. Anal. Bioanal. Chem., 2017, 409(21):4951-4958.

[10]

KIM M, UM H J, BANG S, LEE S H, OH S J, HAN J H, KIM K W, MIN J, KIM Y H. Environ. Sci. Technol., 2009, 43(24):9335-9340.

[11]

CUI L, WU J, JU H X. Biosens. Bioelectron., 2016, 79:861-865.

[12]

ZENG L W, ZHOU D H, GONG J Y, LIU C S, CHEN J H. Anal. Chem., 2019, 91(3):1724-1727.

[13]

TAGHDISI S M, DANESH N M, RAMEZANI M, EMRANI A S, ABNOUS K. Sens. Actuators B, 2018, 256:472-478.

[14]

MATSUNAGA K, OKUYAMA Y, HIRANO R, OKABE S, TAKAHASHI M, SATOH H. Chemosphere, 2019, 224:538-543.

[15]

WU Y G, WANG F Z, ZHAN S S, LIU L, LUO Y F, ZHOU P. RSC Adv., 2013, 3(48):25614-25619.

[16]

PAN J F, LI Q, ZHOU D H, CHEN J H. Talanta, 2018, 189:370-376.

[17]

ZHANG Z H, LI J, WANG X Y, LIANG A H, JIANG Z L. Microchim. Acta, 2019, 186(9):638.

[18]

CORTES-SALAZAR F, BEGGAH S, VAN DER MEER J R, GIRAULT H H. Biosens. Bioelectron., 2013, 47:237-242.

[19]

YADAV R, KUSHWAH V, GAUR M S, BHADAURIA S, BERLINA A N, ZHERDEV A V, DZANTIEV B B. Int. J. Environ. Anal. Chem., 2019, 100(6):623-634.

[20]

WANG Y, QU K, TANG L, LI Z, MOORE E, ZENG X, LIU Y, LI J. TrAC-Trends Anal. Chem., 2014, 58:54-70.

[21]

ZHAO T, LI T, LIU Y. Nanoscale, 2017, 9(28):9841-9847.

[22]

SHI Y P, PAN Y, ZHANG H, ZHANG Z M, LI M J, YI C Q, YANG M S. Biosens. Bioelectron., 2014, 56:39-45.

[23]

BORGHEI Y S, HOSSEINI M, DADMEHR M, HOSSEINKHANI S, GANJALI M R, SHEIKHNEJAD R. Anal. Chim. Acta, 2016, 904:92-97.

[24]

STORHOFF J J, ELGHANIAN R, MUCIC R C, MIRKIN C A, LETSINGER R L. J. Am. Chem. Soc., 1998, 120(9):1959-1964.

[25]

CHENG S, ZHENG B, WANG M Z, GE X W, ZHAO Q, LIU W, LAM M H W. Biosens. Bioelectron., 2014, 53:479-485.

[26]

LI H X, ROTHBERG L. Proc. Natl. Acad. Sci. USA, 2004, 101(39):14036-14039.

[27]

ZHAN S S, YU M L, LV J, WANG L M, ZHOU P. Aust. J. Chem., 2014, 67(5):813-818.

[28]

ZONG C H, LIU J W. Anal. Chem., 2019, 91(16):10887-10893.

计量
  • PDF下载量(26)
  • 文章访问量(299)
  • HTML全文浏览量(8)

目录

基于核酸适配体和金纳米颗粒的荧光比色双模式检测As(Ⅲ)

袁敏, 王梦雪, 郑玉竹, 曹慧, 徐斐, 叶泰, 于劲松

Figures and Tables