引用本文: 袁敏, 王梦雪, 郑玉竹, 曹慧, 徐斐, 叶泰, 于劲松. 基于核酸适配体和金纳米颗粒的荧光比色双模式检测As(Ⅲ). 分析化学, 2021, 49(1): 76-84. doi: 10.19756/j.issn.0253-3820.201180 [复制]
Citation: YUAN Min , WANG Meng-Xue , Zheng Yu-Zhu , CAO Hui , XU Fei , YE Tai , YU Jin-Song . Aptamer/Gold Nanoparticles-based Fluorometric and Colorimetric Dual-Mode Detection of Arsenite. Chinese Journal of Analytical Chemistry, 2021, 49(1): 76-84. doi: 10.19756/j.issn.0253-3820.201180 [复制]
基于核酸适配体和金纳米颗粒的荧光比色双模式检测As(Ⅲ)
Aptamer/Gold Nanoparticles-based Fluorometric and Colorimetric Dual-Mode Detection of Arsenite
基于金纳米颗粒(AuNPs)对荧光基团的荧光共振能量转移和其自身独特的光学效应,结合高亲和力和高特异性的核酸适配体,建立了一种荧光和比色双模式检测As(Ⅲ)的方法。将荧光基团修饰的As(Ⅲ)特异的核酸适配体(FAM-Apt)吸附在未修饰的AuNPs表面,FAM-Apt与AuNPs之间发生荧光共振能量转移,导致荧光猝灭。体系中存在As(Ⅲ)时,As(Ⅲ)与FAM-Apt结合,使FAM-Apt从AuNPs表面释放,荧光增强;同时,失去FAM-Apt保护的AuNPs在盐溶液中发生聚集,溶液由红色变为蓝灰色,因此可以通过荧光和比色双模式进行As(Ⅲ)的检测。荧光强度和吸光度比值的变化分别与As(Ⅲ)浓度呈良好的线性关系,荧光法的线性检测范围为5~800 μmol/L,检出限为3.64 μmol/L(3σ);比色法的线性检测范围为5~100 μmol/L,检出限为3.42 μmol/L(3σ);两种模式综合后的线性检测范围为5~1000 μmol/L,检出限为1.55 μmol/L(3σ)。本方法简单、快速、易操作,两种检测模式可以相互验证和联合使用,并成功用于检测果蔬中的As(Ⅲ),为其它生物小分子、金属离子和蛋白质的检测提供了一种基于核酸适配体的通用方法。
On the basis of fluorescence resonance energy transfer of gold nanoparticles (AuNPs) to fluorophore and the unique optical effect of AuNPs and in combination with arsenite aptamer, a dual mode of fluorescent and colorimetric detection method for inorganic arsenite was developed. In this method, the unmodified AuNPs were used as the carrier, and the aptamer of arsenic modified by FAM (FAM-Apt) as the probe was adsorbed on the surface of AuNPs. Due to the fluorescence resonance energy transfer between FAM-Apt and AuNPs, the fluorescence of FAM-Apt could be quenched by AuNPs. When arsenite was present, it combined with FAM-Apt, so that it was released from the surface of AuNPs, which induced the fluorescence recovery. And the gold nanoparticles without the protection of aptamer FAM-Apt were easily induced to aggregate, and the color changed from red into blue in the presence of salt. Thus a dual-mode detectior of fluorescence and colorimetry was developed for As(Ⅲ) detection. Both the fluorescence and colorimetric adsorption showed a good linear relationship with arsenite concentration. The fluorescence method showed a detection range of 5-800 μmol/L with a detection limit of 3.64 μmol/L (3σ), while the colorimetric method showed a detection range of 5-100 μmol/L with a detection limit of 3.42 μmol/L (3σ). And the dual-mode combined with fluorescence and colorimetry showed a linear detection range of 5-1000 μmol/L with a detection limit of 1.55 μmol/L. This method was simple, fast and easy to operate. The dual-mode method illustrated a lower detection limit and a wider detection range. The two detection modes could verify each other, and were successfully used in detection of As(Ⅲ) in fruit and vegetables. Moreover, the method could provide a general strategy for detecting other small biomolecules, metal ions and proteins.
[1] |
PENA-PEREIRA F, VILLAR-BLANCO L, LAVILLA I, BENDICHO C. Anal. Chim. Acta, 2018, 1011:1-10. |
[2] |
SCHNEIDER M, CADORIM H R, WELZ B, CARASEK E, FELDMANN J. Talanta, 2018, 188:722-728. |
[3] |
MAO X, QI Y, HUANG J, LIU J, CHEN G, NA X, WANG M, QIAN Y. Anal. Chem., 2016, 88(7):4147-4152. |
[4] |
STIBOLLER M, RABER G, GJENGEDAL E L F, EGGESBO M, FRANCESCONI K A. Anal. Chem., 2017, 89(11):6266-6272. |
[5] |
KAUR H, KUMAR R, BABU J N, MITTAL S. Biosens. Bioelectron., 2015, 63:533-545. |
[6] |
LV X, ZHANG Y F, LIU G F, DU L Y, WANG S H. RSC Adv., 2017, 7(27):16290-16294. |
[7] |
TAN D D, HE Y, XING X J, ZHAO Y, TANG H W, PANG D W. Talanta, 2013, 113:26-30. |
[8] |
BABAEI M, JALALIAN S H, BAKHTIARI H, RAMEZANI M, ABNOUS K, TAGHDISI S M. Aust. J. Chem., 2017, 70(6):718-723. |
[9] |
ZHU Y F, WANG Y S, ZHOU B, YU J H, PENG L L, HUANG Y Q, LI X J, CHEN S H, TANG X, WANG X F. Anal. Bioanal. Chem., 2017, 409(21):4951-4958. |
[10] |
KIM M, UM H J, BANG S, LEE S H, OH S J, HAN J H, KIM K W, MIN J, KIM Y H. Environ. Sci. Technol., 2009, 43(24):9335-9340. |
[11] |
CUI L, WU J, JU H X. Biosens. Bioelectron., 2016, 79:861-865. |
[12] |
ZENG L W, ZHOU D H, GONG J Y, LIU C S, CHEN J H. Anal. Chem., 2019, 91(3):1724-1727. |
[13] |
TAGHDISI S M, DANESH N M, RAMEZANI M, EMRANI A S, ABNOUS K. Sens. Actuators B, 2018, 256:472-478. |
[14] |
MATSUNAGA K, OKUYAMA Y, HIRANO R, OKABE S, TAKAHASHI M, SATOH H. Chemosphere, 2019, 224:538-543. |
[15] |
WU Y G, WANG F Z, ZHAN S S, LIU L, LUO Y F, ZHOU P. RSC Adv., 2013, 3(48):25614-25619. |
[16] |
PAN J F, LI Q, ZHOU D H, CHEN J H. Talanta, 2018, 189:370-376. |
[17] |
ZHANG Z H, LI J, WANG X Y, LIANG A H, JIANG Z L. Microchim. Acta, 2019, 186(9):638. |
[18] |
CORTES-SALAZAR F, BEGGAH S, VAN DER MEER J R, GIRAULT H H. Biosens. Bioelectron., 2013, 47:237-242. |
[19] |
YADAV R, KUSHWAH V, GAUR M S, BHADAURIA S, BERLINA A N, ZHERDEV A V, DZANTIEV B B. Int. J. Environ. Anal. Chem., 2019, 100(6):623-634. |
[20] |
WANG Y, QU K, TANG L, LI Z, MOORE E, ZENG X, LIU Y, LI J. TrAC-Trends Anal. Chem., 2014, 58:54-70. |
[21] |
ZHAO T, LI T, LIU Y. Nanoscale, 2017, 9(28):9841-9847. |
[22] |
SHI Y P, PAN Y, ZHANG H, ZHANG Z M, LI M J, YI C Q, YANG M S. Biosens. Bioelectron., 2014, 56:39-45. |
[23] |
BORGHEI Y S, HOSSEINI M, DADMEHR M, HOSSEINKHANI S, GANJALI M R, SHEIKHNEJAD R. Anal. Chim. Acta, 2016, 904:92-97. |
[24] |
STORHOFF J J, ELGHANIAN R, MUCIC R C, MIRKIN C A, LETSINGER R L. J. Am. Chem. Soc., 1998, 120(9):1959-1964. |
[25] |
CHENG S, ZHENG B, WANG M Z, GE X W, ZHAO Q, LIU W, LAM M H W. Biosens. Bioelectron., 2014, 53:479-485. |
[26] |
LI H X, ROTHBERG L. Proc. Natl. Acad. Sci. USA, 2004, 101(39):14036-14039. |
[27] |
ZHAN S S, YU M L, LV J, WANG L M, ZHOU P. Aust. J. Chem., 2014, 67(5):813-818. |
[28] |
ZONG C H, LIU J W. Anal. Chem., 2019, 91(16):10887-10893. |
基于核酸适配体和金纳米颗粒的荧光比色双模式检测As(Ⅲ)
Aptamer/Gold Nanoparticles-based Fluorometric and Colorimetric Dual-Mode Detection of Arsenite
计量
- PDF下载量(17)
- 文章访问量(169)
- HTML全文浏览量(6)