引用本文: 金贵善, 刘汉彬, 张建锋, 韩娟, 邱林飞, 李军杰, 张佳, 石晓. 流体包裹体CO2碳同位素组成的在线连续流分析方法研究. 分析化学, 2021, 49(1): 137-143. doi: 10.19756/j.issn.0253-3820.201363 [复制]
Citation: JIN Gui-Shan , LIU Han-Bin , ZHANG Jian-Feng , HAN Juan , QIU Lin-Fei , LI Jun-Jie , ZHANG Jia , SHI Xiao . On-line Continuous Flow Analysis of Carbon Isotopic Composition of CO2 in Fluid Inclusions. Chinese Journal of Analytical Chemistry, 2021, 49(1): 137-143. doi: 10.19756/j.issn.0253-3820.201363 [复制]
流体包裹体CO2碳同位素组成的在线连续流分析方法研究
On-line Continuous Flow Analysis of Carbon Isotopic Composition of CO2 in Fluid Inclusions
在矿物包裹体中CO2碳同位素组成的分析中,通常采用离线式机械破碎或者高温加热爆裂的方式将包裹体中的CO2释放出来,纯化后,利用同位素比质谱仪双路测试其碳同位素组成。本研究设计了一种在线连续流爆裂提取装置,通过气体转换接口Conflo Ⅳ与稳定同位素质谱仪(IRMS)连接,采用高纯氦气作为载气,将石英单矿物的包裹体加热爆裂释放出来,并迅速带离高温区,减少同位素发生交换,液氮冷冻收集的气体加热释放后,经色谱柱分离,测试CO2碳同位素组成,分析精度优于0.20‰(1 σ)。此外,将进样针连接于此系统,利用碳酸盐标准物质生成CO2气体,收集并进行测试验证,结果表明,多标准建立碳同位素组成校正曲线的线性相关性(R2=1)较好。此系统可以快速、准确地在线分析矿物包裹体中CO2碳同位素组成,实验过程全部在线完成,操作流程更加简化,实验效率大幅提高。
Generally, the off-line method is used to characterize the carbon isotopic composition of CO2 enclosed in the mineral fluid inclusions. The enclosed CO2 is first released by mechanical crushing or thermal decrepitation, and then is collected, purified and measured by isotope ratio mass spectrometer (IRMS). Here, an on-line continuous flow analytic system was developed by linking the thermal decrepitation device and IRMS with Conflo Ⅳ. The gas-liquid inclusions were heated and burst out and the released gas was quickly taken away from the high-temperature area by using high-purity He as carrier gas to reduce the isotope exchange. The gas of CO2 was collected after cooling with liquid nitrogen and then separated by chromatographic column. The separated CO2 was analyzed by IRMS with an analysis accuracy of 0.2‰ (1σ). By connecting the measurement needle to the system, it could be used to collect and test CO2 produced by carbonate reference materials. The results showed that the linear correlation of the calibration curves established by several standards was significant, and the carbon isotopic composition of CO2 within fluid inclusions could be accurately determined. By using this online method, the operation process was simplified, and the experimental efficiency was greatly improved.
[1] |
JAVOY M. Geophys. Res. Lett., 1997, 24(2):177-180. |
[2] |
PLESSEN B, LUDERS V. Rapid Commun. Mass Spectrom., 2012, 26:1157-1161. |
[3] |
WU R C, LIU J B, CALNER M, GONG F Y, LEHNERT O, LUAN X C, LI L X, ZHAN R B. J. Geol. Soc., 2020, 177(3):537-549. |
[4] |
DES MARAIS D J. Rev. Mineral. Geochem., 2001, 43(1):555-578. |
[5] |
GENNARO M E, GRASSA F, MARTELLI M, RENZULLI A, RIZZO A L. J. Volcanol. Geotherm. Res., 2017, 346:95-103. |
[6] |
VERMA M P, GELDERN R, CARVALHO M C, GRASSA F, DELGADO-HUERTAS A, MONVOISIN G, CARRIZO D. Rapid Commun. Mass Spectrom., 2020, 34:e8685. |
[7] |
BLANKS D E, HOLWELL D A, FIORENTINI M L, MORONI M, GIULIANI A, TASSARA S, FERRARI E. Nat. Commun., 2020, 11(1):4342. |
[8] |
CASTILLO-OLIVER M, GIULIANI A, GRIFFIN W L, O'REILLY S Y, DRYSDALE R N, ABERSTEINER A, THOMASSOT E, LI X H. Contrib. Mineral. Petrol., 2020, 175(4):33. |
[9] |
MERNAGH T P, BASTRAKOV E N, ZAW K, WYGRALAK A S. Acta Petrol. Sin., 2007, 23(1):21-32. |
[10] |
TAO R, HONG Z, ZHANG X C. Ore Geol. Rev., 2020, 118:103354. |
[11] |
JIANG H, JIANG S Y, LI W Q, PENG N J, ZHAO K D. Ore Geol. Rev., 2019, 112:103007. |
[12] |
KLEIN E L, FUZIKAWA K. Ore Geol. Rev., 2010, 37(1):31-40. |
[13] |
MUMM A S, OBERTHVR T, VETTER U, BLENKINSOP T G. Miner. Deposita, 1997, 32(2):107-118. |
[14] |
HUANG Y H, TARANTOLA A, LU W J, CAUMON M C, WANG W J. Appl. Geochem., 2020, 115:104563. |
[15] |
DALLAI L, LUCCHINI R, SHARP Z D. Handbook of Stable Isotope Analytical Techniques, 2004:62-87. |
[16] |
BUIKIN A I, KAMALEEVA A I, MIGDISOVA N A. Petrology, 2016, 24(3):303-313. |
[17] |
MILLER M F, PILLINGER C T. Geochim. Cosmochim. Acta, 1997, 61(1):193-205. |
[18] |
SANTOSH M, JACKSON D H, HARRIS N B W. J. Petrol., 1993, 34(2):233-258. |
[19] |
LI H W, FENG L J LI J T, CHEN J, LIU W. Anal. Methods, 2014, 6(13):4504-4506. |
[20] |
YOKOKURA L, HAGIWARA Y, YAMAMOTO J. J. Raman Spectrosc., 2020, 51(6):997-1002. |
[21] |
GONG S, SESTAK S, ARMAND S, VERGARA T. ASEG Extended Abstracts, 2018, 1:1-3. |
[22] |
LÜDERS V, PLESSEN B, PRIMIO R D. Mar. Pet. Geol., 2012, 30(1):174-183. |
[23] |
SOKERINA N V, ZYKIN N N, KUZNETSOV S K, ZHARKOV V A, ISAENKO S I, SHANINA S N. Geochem. Int., 2012, 51(1):76-82. |
[24] |
KORNEXL B E, GEHRE M, HÖFLING R, WERNER R A. Rapid Commun. Mass Spectrom., 1999, 13(16):1685-1693. |
流体包裹体CO2碳同位素组成的在线连续流分析方法研究
On-line Continuous Flow Analysis of Carbon Isotopic Composition of CO2 in Fluid Inclusions
计量
- PDF下载量(0)
- 文章访问量(61)
- HTML全文浏览量(0)