首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   覃秀, 袁春玲, 石睿, 王述正, 王益林. 基于碘刻蚀金纳米棒的比色法测定多巴胺. 分析化学, 2021, 49(1): 60-67. doi:  10.19756/j.issn.0253-3820.201384 [复制]

Citation:   QIN Xiu , YUAN Chun-Ling , SHI Rui , WANG Shu-Zheng , WANG Yi-Lin . Colorimetric Detection of Dopamine Based on Iodine-mediated Etching of Gold Nanorods. Chinese Journal of Analytical Chemistry, 2021, 49(1): 60-67. doi: 10.19756/j.issn.0253-3820.201384 [复制]

基于碘刻蚀金纳米棒的比色法测定多巴胺

通讯作者:  王益林, theanalyst@163.com

收稿日期: 2020-07-02

基金项目: 国家自然科学基金项目(No.61664002)、广西研究生教育创新计划项目(No.YCSW2020016)和广西大学大学生创新创业训练计划项目(No.202010593042)资助。

Colorimetric Detection of Dopamine Based on Iodine-mediated Etching of Gold Nanorods

Corresponding author:  WANG Yi-Lin , theanalyst@163.com

Received Date:  2020-07-02

Fund Project:  Supported by the National Natural Science Foundation of China (No.61664002), the Innovation Project of Guangxi Graduate Education (No.YCSW2020016) and the Foundation of College Student Innovation Ability Training of Guangxi University (No.202010593042).

基于金纳米棒(AuNRs)具有可调节的表面等离子共振(SPR)光学特性,以及多巴胺(DA)还原KIO3生成的I2刻蚀AuNRs,并使其光谱蓝移的原理,发展了一种以波长变化为响应信号的比色分析法,用于多巴胺(DA)的高灵敏测定。KIO3不能刻蚀AuNRs,但在DA存在下,IO3-还原生成的I2能刻蚀AuNRs,使其纵向局域表面等离子共振(LSPR)吸收峰蓝移,并伴有明显的由酒红色到蓝色的颜色变化。在保持AuNRs用量一定的条件下,考察了KIO3浓度、温度、pH值和孵育时间等因素对信号响应的影响。结果表明,在KIO3浓度为0.7 mmol/L、反应温度为50℃、pH=2.6及孵育时间为6 min的条件下,AuNRs吸收波长的蓝移值与DA浓度在0.80~60.0 μmol/L范围内呈良好的线性关系,方法的检出限为0.62 μmol/L(3σ/k),尿液中常见的共存物不干扰测定,实际尿液样品中DA的加标回收率在103.0%~110.8%之间。

关键词:   金纳米棒, 比色法, 多巴胺
Key words:   Gold nanorods, Colorimetric, Dopamine
[1]

WANG J, DU R, LIU W, YAO L, DING F, ZOU P, WANG Y Y, WANG X X, ZHAO Q B, RAO H B. Sens. Actuators B, 2019, 290:125-132.

[2]

MAIA T V, FRANK M J. Biol. Psychiatry, 2017, 81(1):52-66.

[3]

DE BENEDETTO G E, FICO D, PENNETTA A, MALITESTA C, NICOLARDI G, LOFRUMENTO D D, DE NUCCIO F, LA PESA V. J. Pharm. Biomed. Anal., 2014, 98:266-270.

[4]

LENG Y M, XIE K, YE L Q, LI G Q, LU Z W, HE J B. Talanta, 2015, 139:89-95.

[5]

ZHAO J J, ZHAO L M, LAN C Q, ZHAO S L. Sens. Actuators B, 2016, 223:246-251.

[6]

HUANG W, DENG Y Q, HE Y. Biosens. Bioelectron., 2017, 91:89-94.

[7]

GAN Y, HU N, HE C J, ZHOU S Q, TU J W, LIANG T, PAN Y X, KIRSANOV D, LEGIN A, WAN H, WANG P. Biosens. Bioelectron., 2019, 130:254-261.

[8]

MA X M, HE S, QIU B, LUO F, GUO L H, LIN Z Y. ACS Sens., 2019, 4(4):782-791.

[9]

RAO H H, XUE X, WANG H Q, XUE Z H. J. Mater. Chem. C, 2019, 7(16):4610-4621.

[10]

AN L, WANG Y Y, TIAN Q W, YANG S P. Materials, 2017, 10(12):1372.

[11]

ZHANG Z Y, WANG H, CHEN Z P, WANG X Y, CHOO J, CHEN L X. Biosens. Bioelectron., 2018, 114:52-65.

[12]

LIU S Y, LI X Y. Mater. Sci. Eng. B, 2019, 240:49-54.

[13]

ZHANG Z Y, CHEN Z P, CHEN L X. Langmuir, 2015, 31:9253-9259.

[14]

ZHANG Z Y, CHEN Z P, CHENG F B, ZHANG Y W, CHEN L X. Biosens. Bioelectron., 2017, 89(2):932-936.

[15]

ZHONG Q M, CHEN Y Y, QIN X, WANG Y L, YUAN C L, XU Y J. Microchim. Acta, 2019, 186(3):161.

[16]

XU S H, JIANG L P, LIU Y Y, LIU P P, WANG W, LUO X L. Anal. Chim. Acta, 2019, 1071:53-58.

[17]

LIU Y, LV B J, LIU A R, LIANG G Y, YIN L H, PU Y P, WEI W, GOU S H, LIU S Q. Sens. Actuators B, 2018, 265:675-681.

[18]

ZENG J B, ZHANG Y, ZENG T, ALEISA R, QIU Z W, CHEN Y Z, HUANG J K, WANG D W, YAN Z F, YIN Y D. Nano Today, 2020, 32:100855.

[19]

DUAN W, LIU A, LI Q, LI Z W, WEN C Y, CAI Z X, TANG S M, LI X Y, ZENG J B. Analyst, 2019, 144:4582-4588.

[20]

LIU X, ZHANG S Y, TAN P L, ZHOU J, HUANG Y, NIE Z, YAO S Z. Chem. Commun., 2013, 49(18):1856-1858.

[21]

MA X M, LIN Y, GUO L H, QIU B, CHEN G N, YANG H H, LIN Z Y. Biosens. Bioelectron., 2017, 87:122-128.

[22]

WANG H Q, RAO H H, XUE X, AN P L, GAO M, LUO M Y, LIU X H, XUE Z H. Anal. Chim. Acta, 2020, 1097:222-229.

[23]

ZHANG Z Y, CHEN Z P, WANG S S, CHENG F B, CHEN L X. ACS Appl. Mater. Interfaces, 2015, 7(50):27639-27645.

[24]

CHENG X, HUANG Y, YUAN C, DAI K, JIANG H, MA J M. Sens. Actuators B, 2019, 282:838-843.

[25]

SHI Y, PANG Y J, HUANG N, SUN C Q, PAN Y D, CHENG Y J, LONG Y, ZHENG H Z. Spectrochim. Acta A, 2019, 209:8-13.

[26]

ZHANG Y L, QI S J, LIU Z G, SHI Y P, YUE W Q, YI C Q. Mater. Sci. Eng. C, 2016, 61:207-213.

[27]

LIU J M, WANG X X, CUI M L, LIN L P, JIANG S L, JIAO L, ZHANG L H. Sens. Actuators B, 2013, 176:97-102.

[28]

IVANOVA M N, GRAYFER E D, PLOTNIKOVA E E, KIBIS L S, DARABDHARA G, BORUAH P K, DAS M R, FEDOROV V E. ACS Appl. Mater. Interfaces, 2019, 11(25):22102-22112.

[29]

ZHU Y, YANG Z Z, CHI M Q, LI M X, WANG C, LU X F. Talanta, 2018, 181:431-439.

[30]

SAENZ H S C, HERNANDEZ-SARAVIA L P, SELVA J S G, SUKERI A, ESPINOZA-MONTERO P J, BERTOTTI M. Microchim. Acta, 2018, 185(8):367.

[31]

NIKOLELIS D P, DRIVELOS D A, SIMARTIRAKI M G, KOINIS S. Anal. Chem., 2004, 76(8):2174-2180.

计量
  • PDF下载量(47)
  • 文章访问量(145)
  • HTML全文浏览量(2)

目录

基于碘刻蚀金纳米棒的比色法测定多巴胺

覃秀, 袁春玲, 石睿, 王述正, 王益林

Figures and Tables