首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   赵玥祯, 徐杨, 龚灿, 鞠钰蕊, 刘兆鑫, 许旭. 纳米四氧化三铁基质用于基质辅助激光解吸电离质谱法分析小分子化合物. 分析化学, 2021, 49(1): 103-112. doi:  10.19756/j.issn.0253-3820.201391 [复制]

Citation:   ZHAO Yue-Zhen , XU Yang , GONG Can , JU Yu-Rui , LIU Zhao-Xin , XU Xu . Analysis of Small Molecule Compounds by Matrix-assisted Laser Desorption Ionization Mass Spectrometry with Fe3O4 Nanoparticles as Matrix. Chinese Journal of Analytical Chemistry, 2021, 49(1): 103-112. doi: 10.19756/j.issn.0253-3820.201391 [复制]

纳米四氧化三铁基质用于基质辅助激光解吸电离质谱法分析小分子化合物

通讯作者:  许旭, xuxu@sit.edu.cn

收稿日期: 2020-07-05

基金项目: 国家自然科学基金项目(No.31671928)和上海市自然科学基金项目(No.15ZR1440800)资助

Analysis of Small Molecule Compounds by Matrix-assisted Laser Desorption Ionization Mass Spectrometry with Fe3O4 Nanoparticles as Matrix

Corresponding author:  XU Xu , xuxu@sit.edu.cn

Received Date:  2020-07-05

Fund Project:  Supported by the National Natural Science Foundation of China (No.31671928) and the Natural Science Foundation of Shanghai, China (No.15ZR1440800).

考察了基质辅助激光解吸电离质谱(MALDI-MS)使用纳米四氧化三铁(Fe3O4)基质分析氨基酸、寡糖和甘油三酯等小分子化合物的效果。与不同的纳米基质以及二元混合基质比较后,选择Fe3O4纳米基质,以D,L-焦谷氨酸、D,L-天冬酸、L-脯氨酸、L-苯丙氨酸、D-(+)-蔗糖、棉子糖、三棕榈酸甘油酯和三油酸甘油酯为样品,考察了实验条件对噪音和信号强度的影响,结果表明,Fe3O4作为MALDI基质具有在增强检测信号强度的同时降低背景噪声的特点。在正电荷检测模式下,选择激光能量为70%,采用先加基质再加分析物的点样方法进行分析,结果表明,纳米Fe3O4基质用于检测氨基酸、寡糖和甘油三酯的重现性和灵敏度良好。在优化条件下分析L-苯丙氨酸、D-(+)-蔗糖和三油酸甘油酯,点内重复性相对标准偏差(RSD)<3.2%,点间重复性RSD<6.0%,在0.05-1.0 mg/mL范围内,测定3种样品的线性相关系数R2>0.997,显示出良好的定量分析潜力。

关键词:   基质辅助激光解吸电离质谱, 纳米四氧化三铁, 氨基酸, 寡糖, 甘油三酯
Key words:   Matrix assisted laser desorption ionization mass spectrometry, Triiron tetraoxide nanoparticles, Amino acid, Oligosaccharide, Triglyceride
[1]

AL-HETLANI E, AMIN M O, MADKOUR M, NAZEER A A. Talanta, 2018, 185:439-445.

[2]

WANG Z J, CAI Y, WANG Y, ZHOU X W, ZHANG Y, LU H J. Sci. Rep., 2017, 7:44466.

[3]

KOLAROVA L, KUCERA L, VANHARA P, HAMPL A, HAVEL J. Rapid Commun. Mass Spectrom., 2015, 29(17):1585-1595.

[4]

HE H, WEN Y R, GUO Z C, LI P F, LIU Z. Anal. Chem., 2019, 91(13):8390-8397.

[5]

LIANG Q L, SHERWOOD J, MACHER T, WILSON J M, BAO Y P, CASSADY C J. J. Am. Soc. Mass Spectrom., 2017, 28(3):409-418.

[6]

CALVANO C D, CAPOZZI M A M, PUNZI A, FARINOLA G M, CATALDI T R I, PALMISANO F. ACS Omega, 2018, 3(12):17821-17827.

[7]

DE-ALMEIDA C M, PINTO F E, DOS-SANTOS N A, DE-SOUZA L M, MERLO B B, THOMPSON C J, ROMAO W. Microchem. J., 2019, 149:104002-104010.

[8]

DOS-SANTOS N A, DE-SOUZA L M, PINTO F E, DE-J MACRINO C, DE-ALMEIDA C M, MERLO B B, FILGUEIRAS P R, ORTIZ R S, MOHANA-BORGES R, ROMAO W. Anal. Methods, 2019, 11(13):1757-1764.

[9]

STUEBIGER G, NAIRN M D, ABBAN T K, OPENSHAW M E, MANCERA L, HERZIG B, WUCZKOWSKI M, SENFTER D, MADER R M. Anal. Chem., 2018, 90(22):13178-13182.

[10]

LI B, SUN R Y, GORDON A, GE J Y, ZHANG Y, LI P, YANG H. Anal. Chem., 2019, 91(13):8221-8228.

[11]

LEE Y, SEO E, PARK T M, BAE K H, CHA S. Mass Spectrom. Lett., 2017, 8(4):105-108.

[12]

MARSICO A L, DUNCAN B, LANDIS R F, TONGA G Y, ROTELLO V M, VACHET R W. Anal. Chem., 2017, 89(5):3009-3014.

[13]

CHU H W, UNNIKRISHNAN B, ANAND A, MAO J Y, HUANG C C. J. Food Drug Anal., 2018, 26(4):1215-1228.

[14]

ZHU Z P, SHEN J J, WANG D W, CHEN C, XU Y F, GUO H M, KANG D, HAMADA N, DONG J, WANG G J, LIANG Y. Anal. Bioanal. Chem., 2019, 411(5):1041-1052.

[15]

BANAZADEH A, PENG W J, VEILLON L, MECHREF Y. J. Am. Soc. Mass Spectrom., 2018, 29(9):1892-1900.

[16]

CHEN S, ZHENG H Z, WANG J N, HOU J, HE Q, LIU H H, XIONG C Q, KONG X L, NIE Z X. Anal. Chem., 2013, 85(14):6646-6652.

[17]

SHAHNAWAZ K M, BHAISARE M L, PANDEY S, TALIB A, WU S M, KAILASA S K, WU H F. Int. J. Mass Spectrom., 2015, 393:25-33.

[18]

GEDDA G, PANDEY S, BHAISARE M L, WU H F. RSC Adv., 2014, 4(72):38027-38033.

[19]

CHEN Y L, GAO D, BAI H R, LIU H X, LIN S, JIANG Y Y. J. Am. Soc. Mass Spectrom., 2016, 27(7):1227-1235.

[20]

ZHANG Y Y, GAO D, LI S F, WEI W L, LIN J S, JIANG Y Y. Anal. Methods, 2019, 11(8):1131-1136.

[21]

MALEKI S, LEE D, KIM Y, KIM J. Int. J. Mass Spectrom., 2019, 442:44-50.

[22]

LU W J, LI Y, LI R J, SHUANG S M, DONG C, CAI Z W. ACS Appl. Mater. Interfaces, 2016, 8(20):12976-12984.

[23]

WANG Y W, GAO D, CHEN Y L, HU G N, LIU H X, JIANG Y Y. RSC Adv., 2016, 6(82):79043-79049.

[24]

LIN Z, ZHENG J N, LIN G, TANG Z, YANG X Q, CAI Z W. Anal. Chem., 2015, 87(15):8005-8012.

[25]

POPOVIC I, MILOVANOVIC D, MILETIC J, NESIC M, VRANJES M, SAPONJIC Z, PETKOVIC M. Opt. Quantum Electron., 2016, 48(2):113-119.

[26]

YANG H, LI S L, ZHANG Q, WANG Z P, LI N, HAN C, HUO Q, ZHAO Z W. Talanta, 2019, 198:310-315.

[27]

YONEZAWA T, ASANO T, MATSUBARA M. Bull. Chem. Soc. Jpn., 2016, 89(3):346-353.

[28]

WU Q, CHU J L, RUBAKHIN S S, GILLETTE M U, SWEEDLER J V. Chem. Sci., 2017, 8(5):3926-3938.

[29]

ANTONE A J, LIANG Q L, SHERWOOD J A, WEISS J C, WILSON J M, DEB S, CASSADY C J, BAO Y P. ACS Appl. Nano Mater., 2019, 2(6):3999-4008.

[30]

FUJII Y, DIING Y, UMEZAWA T, AKIMOTO T, XU J W, UCHIDA T, FUJINO T. Anal. Sci., 2018, 34(2):221-225.

[31]

FEENSTRA A D, O'NEILL K C, YAGNIK G B, LEE Y J. RSC Adv., 2016, 6(101):99260-99268.

[32]

KLEIN A T, YAGNIK G B, HOHENSTEIN J D, JI Z Y, ZI J C, REICHERT M D, MACINTOSH G C, YANG B, PETERS R J, VELA J, LEE Y J. Anal. Chem., 2015, 87(10):5294-5301.

[33]

WEI Y, HAN B, HU X Y, LIN Y H, WANG X Z, DENG X L. Procedia Eng., 2012, 27:632-637.

[34]

WANG J M, ZHENG Y, PENG T Y, ZHANG J, LI R J. ACS Sustainable Chem. Eng., 2017, 5(9):7549-7556.

[35]

KIM M J, PARK J M, NOH J Y, YUN T G, KANG M J, PYUN J C. Rapid Commun. Mass Spectrom., 2019, 33(5):527-538.

[36]

BIBI A, JU H. J. Mass Spectrom., 2016; 51(4):291-297.

计量
  • PDF下载量(8)
  • 文章访问量(120)
  • HTML全文浏览量(1)

目录

纳米四氧化三铁基质用于基质辅助激光解吸电离质谱法分析小分子化合物

赵玥祯, 徐杨, 龚灿, 鞠钰蕊, 刘兆鑫, 许旭

Figures and Tables