首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   薛长国, 唐毓, 李世琴, 张宏艳, 李本侠. 基于可调控咖啡环效应的表面增强拉曼光谱法检测有机染料. 分析化学, 2021, 49(1): 151-158. doi:  10.19756/j.issn.0253-3820.201535 [复制]

Citation:   XUE Chang-Guo , TANG Yu , LI Shi-Qin , ZHANG Hong-Yan , LI Ben-Xia . Surface Enhanced Raman Spectroscopy for Detection of Organic Dyes Based on Adjustable Coffee Ring Effect. Chinese Journal of Analytical Chemistry, 2021, 49(1): 151-158. doi: 10.19756/j.issn.0253-3820.201535 [复制]

基于可调控咖啡环效应的表面增强拉曼光谱法检测有机染料

通讯作者:  薛长国, chgxue@aust.edu.cn

收稿日期: 2020-09-02

基金项目: 国家自然科学基金项目(No.11872001)、安徽省自然科学杰出青年科学基金项目(No.1808085J30)和安徽省重点研究与开发计划项目(No.202004h07020026)资助。

Surface Enhanced Raman Spectroscopy for Detection of Organic Dyes Based on Adjustable Coffee Ring Effect

Corresponding author:  XUE Chang-Guo , chgxue@aust.edu.cn

Received Date:  2020-09-02

Fund Project:  Supported by the National Natural Science Foundation of China (No.11872001), the Excellent Youth Foundation of Anhui Scientific Committee (No.1808085J30) and the Key Research and Development Program Projects in Anhui Province 2020 (No.202004h07020026).

表面增强拉曼光谱(Surface-enhanced Raman spectroscopy,SERS)是快速、无损检测生物化学物质的良好平台,理论上可检测单个分子水平上的化学物质,但这种潜力受到SERS基底的限制。本研究采用基于可调控咖啡环效应的基底,用于提高SERS在测定痕量分析物时的灵敏度和简便性。通过氧等离子技术改变聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)衬底的表面亲疏水性,进而控制待测染料在衬底上形成的咖啡环形状,考察衬底对拉曼信号的影响;将绿色合成的纳米银颗粒(Silver nanoparticles,AgNPs)与待测染料溶液混合,沉积在PDMS衬底,形成咖啡环,探究拉曼信号的增强效果。结果表明,疏水性的增加,减小了咖啡环的尺寸,提高了咖啡环的紧密度,拉曼信号集中在环上,灵敏度高、重复性好,相对标准偏差(Relative standard deviation,RSD)为5%;咖啡环的形成不仅浓缩了分析物,还减少了AgNPs之间的空间,从而增强了热点效应,SERS检测灵敏度显著提高,检出限达到1×10-6 mol/L。这种基于咖啡环效应的SERS为废水中染料检测提供了灵敏和环保的方法,具有广阔的应用前景。

关键词:   表面增强拉曼光谱, 聚二甲基硅氧烷, 咖啡环, 绿色化学, 纳米银, 有机染料
Key words:   Surface-enhanced Raman spectroscopy, Polydimethylsiloxane, Coffee ring, Green chemistry, Silver nanoparticles, Organic dyes
[1]

CUI M H, GAO L, LEE H S, WANG A J. Bioresour. Technol., 2020, 297:122420.

[2]

LIU Y, ZHAO Y, CHENG W, ZHANG T. J. Colloid Interface Sci., 2020, 579:766-777.

[3]

WAZIR M B, DAUD M, ALI F, AL-HARTHI M A. J. Mol. Liq., 2020, 315:113775.

[4]

XU L, ZHANG H, TIAN Y, JIAO A, CHEN F, CHEN M. Talanta, 2019, 194:680-688.

[5]

YU Y, WANG J, XIANG H, YING L, WU C, ZHOU H, LIU H. Dyes Pigm., 2020, 183:108710.

[6]

BANDI R, ALLE M, PARK C W, HAN S Y, KWON G J, KIM J C, LEE S H. Carbohydr. Polym., 2020, 240:116356.

[7]

KNEIPP J, KNEIPP H, KNEIPP K. Chem. Soc. Rev., 2008, 37(5):1052-1060.

[8]

CIALLA D, MARZ A, BOHME R, THEIL F, WEBER K, SCHMITT M, POPP J. Anal. Bioanal. Chem., 2012, 403(1):27-54.

[9]

NIE S M, EMERY S R. Science, 1997, 275(5303):1102-1106.

[10]

PARVATHI V P, PARIMALADEVI R, SATHE V, UMADEVI M. Appl. Surf. Sci., 2019, 473:864-872.

[11]

WU L, PU H, HUANG L, SUN D W. Food Chem., 2020, 328:127105.

[12]

DOANE T L, BURDA C. Chem. Soc. Rev., 2012, 41(7):2885-2911.

[13]

SCHLUCKER S. Angew. Chem. Int. Ed., 2014, 53(19):4756-4795.

[14]

DING S Y, YI J, LI J F, REN B, WU D Y, PANNEERSELVAM R, TIAN Z Q. Nat. Rev. Mater., 2016, 1(6):16.

[15]

HUANG G G, HAN X X, HOSSAIN M K, OZAKI Y. Anal. Chem., 2009, 81(14):5881-5888.

[16]

LI X, LIN X, ZHAO X, WANG H, LIU Y, LIN S, WANG L, CONG S. Appl. Surf. Sci., 2020, 518:146217.

[17]

BOTTA R, EIAMCHAI P, HORPRATHUM M, LIMWICHEAN S, CHANANONNAWATHORN C, PATTHANASETTAKUL V, MAEZONO R, JOMPHOAK A, NUNTAWONG N. Sens. Actuators B, 2020, 304:127327.

[18]

XU J W, DU J J, JING C Y, ZHANG Y L, CUI J L. ACS Appl. Mater. Interfaces, 2014, 6(9):6891-6897.

[19]

MURUGESAN B, YANG J. ACS Omega, 2019, 4(12):14928-14936.

[20]

CHEN R, ZHANG L, LI X, ONG L, SOE Y G, SINSUA N, GRAS S L, TABOR R F, WANG X, SHEN W. ACS Sens., 2017, 2(7):1060-1067.

[21]

HOANG H, UETA Y, TSUKAGOSHI K, NABATAME T, TRINH B N Q, FUJIWARA A. Thin Solid Films, 2020, 698:137860.

[22]

KANIDI M, PAPAGIANNOPOULOS A, MATEI A, DINESCU M, PISPAS S, KANDYLA M. Appl. Surf. Sci., 2020, 527:146841.

[23]

BACHAROUCHE J, HAIDARA H, KUNEMANN P, VALLAT M F, ROUCOULES V. Sens. Actuators A, 2013, 197:25-29.

[24]

LEE D, YANG S. Sens. Actuators B, 2012, 162(1):425-434.

[25]

HEO B, FIOLA M, YANG J H, KOH A. Colloid Interface Sci. Commun., 2020, 38:100301.

[26]

GAO Z, SONG G, ZHANG X, LI Q, YANG S, WANG T, LI Y, ZHANG L, GUO L, FU Y. Sens. Actuators B, 2020:128810.

[27]

MOULTON M C, BRAYDICH-STOLLE L K, NADAGOUDA M N, KUNZELMAN S, HUSSAIN S M, VARMA R S. Nanoscale, 2010, 2(5):763-770.

[28]

YANG J, PAN J. Acta Mater., 2012, 60(12):4753-4758.

[29]

ZHAO X, XIA Y, LI Q, MA X, QUAN F, GENG C, HAN Z. Colloids Surf. A, 2014, 444:180-188.

[30]

DIVYA M, KIRAN G S, HASSAN S, SELVIN J. Biocatal. Agric. Biotechnol., 2019, 18:101037.

[31]

LE RU E C, BLACKIE E, MEYER M, ETCHEGOIN P G. J. Phys. Chem. C, 2007, 111(37):13794-13803.

[32]

BONANC A C E, NASCIMENTO G M D, DE SOUZA M L, TEMPERINI M L A, CORIO P. Appl. Catal. B, 2008, 77(3):339-345.

计量
  • PDF下载量(6)
  • 文章访问量(41)
  • HTML全文浏览量(2)

目录

基于可调控咖啡环效应的表面增强拉曼光谱法检测有机染料

薛长国, 唐毓, 李世琴, 张宏艳, 李本侠

Figures and Tables