首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   程雅娣, 高建雄, 王焕磊, 黄明华. 钙钛矿氧化物结构分析及其电催化析氢反应研究进展. 分析化学, 2021, 49(6): 952-962. doi:  10.19756/j.issn.0253-3820.210452 [复制]

Citation:   CHENG Ya-Di , GAO Jian-Xiong , WANG Huan-Lei , HUANG Ming-Hua . Structure Analysis of Perovskite Oxides and Research Progress on Their Electrocatalytic Hydrogen Evolution Reaction. Chinese Journal of Analytical Chemistry, 2021, 49(6): 952-962. doi: 10.19756/j.issn.0253-3820.210452 [复制]

钙钛矿氧化物结构分析及其电催化析氢反应研究进展

通讯作者:  黄明华, huangminghua@ouc.edu.cn

收稿日期: 2021-04-21

基金项目: 国家自然科学基金项目(No.21775142)和中国科学院青岛生物能源与过程研究所和大连清洁能源国家实验室项目(No.DICP&QIBEBT UN201809)资助。

Structure Analysis of Perovskite Oxides and Research Progress on Their Electrocatalytic Hydrogen Evolution Reaction

Corresponding author:  HUANG Ming-Hua , huangminghua@ouc.edu.cn

Received Date:  2021-04-21

Fund Project:  Supported by the National Natural Science Foundation of China (No.21775142) and the QIBEBT and Dalian National Laboratory for Clean Energy, CAS (No.DICP&QIBEBT UN201809).

电解水制氢具有操作简单、高效环保等优点,被认为是最具发展潜力的制氢方式,但通常需要施加较大的过电位才能达到工业电解水所需的电流密度。为了降低过电位,减少非必要的能量损失,亟需开发高性能、低成本的析氢反应(HER)电催化剂。钙钛矿材料储量丰富、价格低廉、结构灵活多变,已成为一类用于HER的新型非贵金属基电催化剂。本文首先对HER的基本机理进行了介绍,重点论述了钙钛矿氧化物在电催化HER领域的研究进展,讨论并分析了提升HER性能的策略(离子掺杂、异质结构构筑、形貌结构调控等),最后提出了钙钛矿型HER电催化剂所面临的挑战,并展望了其研究前景。

关键词:   钙钛矿氧化物, 电催化剂, 析氢反应, 碱性介质, 评述
Key words:   Perovskite oxides, Electrocatalyst, Hydrogen evolution reaction, Alkaline medium, Review
[1]

CHU S, MAJUMDAR A. Nature, 2012, 488(7411): 294-303.

[2]

HUA W, SUN H H, XU F, W J G. Rare Met., 2020, 39(4): 335-351.

[3]

DAI J, ZHU Y L, TAHINI H A, LIN Q, CHEN Y, GUAN D Q, ZHOU C, HU Z W, LIN H J, CHAN T S, CHEN C T, SMITH S C, WANG H T, ZHOU W, SHAO Z P. Nat. Commun., 2020, 11(1): 5657.

[4]

SEH Z W, KIBSGAARD J, DICKENS C F, CHORKENDORFF I, NORSKOV J K, JARAMILLO T F. Science, 2017, 355(6321): eaad4998.

[5]

ZHU Y L, ZHOU W, ZHONG Y J, BU Y F, CHEN X Y, ZHONG Q, LIU M L, SHAO Z P. Adv. Energy Mater., 2017, 7(8): 1602122.

[6]

SUEN N T, HUNG S F, QUAN Q, ZHANG N, XU Y J, CHEN H M. Chem. Soc. Rev., 2017, 46(2): 337-365.

[7]

LI X M, HAO X G, ABUDULA A, GUAN G Q. J. Mater. Chem. A, 2016, 4(31): 11973-12000.

[8]

LEDENDECKER M, KRICK CALDERON S, PAPP C, STEINRUCK H P, ANTONIETTI M, SHALOM M. Angew. Chem., Int. Ed., 2015, 54(42): 12361-12365.

[9]

LING T, YAN D Y, WANG H, JIAO Y, HU Z P, ZHENG Y, ZHENG L, MAO J R, LIU H, DU X W, JARONIEC M, QIAO S Z. Nat. Commun., 2017, 8: 1509.

[10]

CHEN P Z, ZHOU T P, ZHANG M X, TONG Y, ZHONG C, ZHANG N, ZHANG L D, WU C Z, XIE Y. Adv. Mater., 2017, 29(30): 1701584.

[11]

HWANG J, RAO R R, GIORDANO L, KATAYAMA Y, YU Y, SHAO-HORN Y. Science, 2017, 358(6364): 751-756.

[12]

GRIMAUD A, MAY K J, CARLTON C E, LEE Y L, RISCH M, HONG W T, ZHOU J G, SHAO-HORN Y. Nat. Commun., 2013, 4: 2439.

[13]

SUN Q, DAI Z Y, ZHANG Z B, CHEN Z L, LIN H Q, GAO Y, CHEN D J. J. Power Sources, 2019, 427: 194-200.

[14]

LIU X Y, YANG L J, ZHOU Z Q, ZENG L L, LIU H, DENG Y Q, YU J Y, YANG C H, ZHOU W J. Chem. Eng. J., 2020, 399: 125779.

[15]

GUAN D Q, ZHOU J, HU Z W, ZHOU W, XU X M, ZHONG Y J, LIU B, CHEN Y H, XU M G, LIN H J, CHEN C T, WANG J Q, SHAO Z P. Adv. Funct. Mater., 2019, 29(20): 1900704.

[16]

SUN H N, DAI J, ZHOU W, SHAO Z P. Energy Fuels, 2020, 34(9): 10547-10567.

[17]

SONG H J, YOON H, JU B, KIM D W. Adv. Energy Mater., 2020: 2002428.

[18]

PENA M A, FIERRO J L G. Chem. Rev., 2001, 101(7): 1981-2018.

[19]

XU X M, ZHONG Y J, SHAO Z P. Trends Chem., 2019, 1(4): 410-424.

[20]

KING G, WOODWARD P M. J. Mater. Chem., 2010, 20(28): 5785-5796.

[21]

TANG L N, CHEN Z, ZUO F, HUA B, ZHOU H, LI M, LI J H, SUN Y F. Chem. Eng. J., 2020, 401: 126082.

[22]

WANG J, LIAO T, WEI Z Z, SUN J T, GUO J J, SUN Z Q. Small Methods, 2021, 5(4): 2000988

[23]

ZHU Y L, LIN Q, ZHONG Y J, TAHINI H A, SHAO Z P, WANG H T. Energy Environ. Sci., 2020, 13(10): 3361-3392.

[24]

VRUBEL H, HU X L. Angew. Chem., Int. Ed., 2012, 51(51): 12703-12706.

[25]

SUNTIVICH J, MAY K J, GASTEIGER H A, GOODENOUGH J B, SHAO-HORN Y. Science, 2011, 334(6061): 1383-1385.

[26]

RISCH M, GRIMAUD A, MAY K J, STOERZINGER K A, CHEN T J, MANSOUR A N, SHAO-HORN Y. J. Phys. Chem. C, 2013, 117(17): 8628-8635.

[27]

XU X M, CHEN Y B, ZHOU W, ZHU Z H, SU C, LIU M L, SHAO Z P. Adv. Mater., 2016, 28(30): 6442-6448.

[28]

XU X M, PAN Y L, ZHONG Y J, GE L, JIANG S P, SHAO Z P. Composites, Part B, 2020, 198: 108214.

[29]

YU J, WU X H, GUAN D Q, HU Z W, WENG S C, SUN H N, SONG Y F, RAN R, ZHOU W, NI M, SHAO Z P. Chem. Mater., 2020, 32(11): 4509-4517.

[30]

WANG J, GAO Y, CHEN D J, LIU J P, ZHANG Z B, SHAO Z P, CIUCCI F. ACS Catal., 2018, 8(1): 364-371.

[31]

ZHANG Z B, CHEN Y B, DAI Z Y, TAN S Z, CHEN D J. Electrochim. Acta, 2019, 312: 128-136.

[32]

LIANG X, SHI L, LIU Y P, CHEN H, SI R, YAN W S, ZHANG Q, LI G D, YANG L, ZOU X X. Angew. Chem., Int. Ed., 2019, 58(23): 7631-7635.

[33]

DONG F F, LI L, KONG Z Q, XU X M, ZHANG Y P, GAO Z H, DONGYANG B K, NI M, LIU Q B, LIN Z. Small, 2021, 17(2): 2006638.

[34]

ZHANG Z B, ZHOU W L, YANG Z W, JIANG J H, CHEN D J, SHAO Z P. Int. J. Hydrogen Energy, 2020, 45(46): 24859-24869.

[35]

GAO J X, ZHANG Y J, WANG X K, JIA L J, JIANG H Q, HUANG M H, TOGHAN A. Mater. Today Energy, 2021, 20: 100695.

[36]

WU X H, YU J, YANG G M, LIU H, ZHOU W, SHAO Z P. Electrochim. Acta, 2018, 286: 47-54.

[37]

AKBASHEV A R, ZHANG L, MEFFORD J T, PARK J, BUTZ B, LUFTMAN H, CHUEH W C, VOJVODIC A. Energy Environ. Sci., 2018, 11(7): 1762-1769.

[38]

TSEKOURAS G, NEAGU D, IRVINE J T S. Energy Environ. Sci., 2013, 6(1): 256-266.

[39]

OH N K, KIM C, LEE J, KWON O, CHOI Y, JUNG G Y, LIM H Y, KWAK S K, KIM G, PARK H. Nat. Commun., 2019, 10: 1723.

[40]

LI Q, WANG D W, LU Q Q, MENG T, YAN M X, FAN L B, XING Z C, YANG X R. Small, 2020, 16(7): e1906380.

[41]

LEE J G, MYUNG J H, NADEN A B, JEON O S, SHUL Y G, IRVINE J T S. Adv. Energy Mater., 2020, 10(10): 1903693.

[42]

GUI L Q, PAN G H, MA X, YOU M S, HE B B, YANG Z H, SUN J, ZHOU W, XU J M, ZHAO L. Appl. Surf. Sci., 2021, 543: 148817.

[43]

ZHU Y L, DAI J, ZHOU W, ZHONG Y J, WANG H T, SHAO Z P. J. Mater. Chem. A, 2018, 6(28): 13582-13587.

[44]

ISLAM Q A, MAJEE R, BHATTACHARYYA S. J. Mater. Chem. A, 2019, 7(33): 19453-19464.

[45]

ZHANG Y Q, TAO H B, CHEN Z, LI M, SUN Y F, HUA B, LUO J L. J. Mater. Chem. A, 2019, 7(46): 26607-26617.

[46]

WANG Y R, WANG Z J, JIN C, LI C, LI X W, LI Y F, YANG R Z, LIU M L. Electrochim. Acta, 2019, 318: 120-129.

[47]

WANG X Y, PAN Z Y, CHU X F, HUANG K K, CONG Y G, CAO R, SARANGI R, LI L P, LI G S, FENG S H. Angew. Chem., Int. Ed., 2019, 131(34): 11846-11851.

[48]

ZHANG Z H, HE B B, CHEN L J, WANG H W, WANG R, ZHAO L, GONG Y S. ACS Appl. Mater. Interfaces, 2018, 10(44): 38032-38041.

[49]

HE B B, TAN K, GONG Y S, WANG R, WANG H W, ZHAO L. Nanoscale, 2020, 12(16): 9048-9057.

[50]

HUA B, LI M, SUN Y F, ZHANG Y Q, YAN N, CHEN J, THUNDAT T, LI J, LUO J L. Nano Energy, 2017, 32: 247-254.

[51]

DAI J, ZHU Y L, ZHONG Y J, MIAO J, LIN B W, ZHOU W, SHAO Z P. Adv. Mater. Interfaces, 2019, 6(1): 1801317.

[52]

GUAN D Q, ZHOU J, HUANG Y C, DONG C L, WANG J Q, ZHOU W, SHAO Z P. Nat. Commun., 2019, 10: 3755.

[53]

TOGANO H, ASAI K, ODA S, IKENO H, KAWAGUCHI S, OKA K, WADA K, YAGI S, YAMADA I. Mater. Chem. Front., 2020, 4(5): 1519-1529.

[54]

HONA R K, KARKI S B, RAMEZANIPOUR F. ACS Sustainable Chem. Eng., 2020, 8(31): 11549-11557.

[55]

LI X N, HE L Q, ZHONG X W, ZHANG J, LUO S J, YI W D, ZHANG L Z, HU M M, TANG J, ZHOU X Y, ZHAO X Z, XU B M. Scanning, 2018, 2018: 1341608.

[56]

HUA B, LI M, ZHANG Y Q, SUN Y F, LUO J L. Adv. Energy Mater., 2017,7(20): 1700666.

[57]

HUA B, LI M, PANG W Y, TANG W Q, ZHAO S L, JIN Z H, ZENG Y M, SHALCHI AMIRKHIZ B, LUO J L. Chem, 2018, 4(12): 2902-2916.

[58]

CHEN G, HU Z W, ZHU Y P, GU B B, ZHONG Y J, LIN H J, CHEN C T, ZHOU W, SHAO Z P. Adv. Mater., 2018, 30(43): 1804333.

[59]

HU C, HONG J H, HUANG J, CHEN W, SEGRE C U, SUENAGA K, ZHAO W, HUANG F Q, WANG J C. Energy Environ. Sci., 2020, 13(11): 4249-4257.

计量
  • PDF下载量(10)
  • 文章访问量(135)
  • HTML全文浏览量(6)

目录

钙钛矿氧化物结构分析及其电催化析氢反应研究进展

程雅娣, 高建雄, 王焕磊, 黄明华

Figures and Tables