首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   王莹莎, 程姗姗, 张守婷, 卢小泉. 基于氧化石墨烯/聚乙二醇/铂纳米杂化材料构建Hg2+的信号传感系统. 分析化学, 2021, 49(6): 1035-1043. doi:  10.19756/j.issn.0253-3820.211034 [复制]

Citation:   WANG Ying-Sha , CHENG Shan-Shan , ZHANG Shou-Ting , LU Xiao-Quan . Construction of Hg2+ Signal Sensing Platform Based on Graphene Oxide/Polyethylene Glycol/Platinum Nanohybrids. Chinese Journal of Analytical Chemistry, 2021, 49(6): 1035-1043. doi: 10.19756/j.issn.0253-3820.211034 [复制]

基于氧化石墨烯/聚乙二醇/铂纳米杂化材料构建Hg2+的信号传感系统

通讯作者:  张守婷, zhangsht@tju.edu.cn; 卢小泉, luxq@nwnu.edu.cn

收稿日期: 2021-01-15

基金项目: 中央政府引导地方科技发展专项资金(2020)资助。

Construction of Hg2+ Signal Sensing Platform Based on Graphene Oxide/Polyethylene Glycol/Platinum Nanohybrids

Corresponding author:  ZHANG Shou-Ting , zhangsht@tju.edu.cn; LU Xiao-Quan , luxq@nwnu.edu.cn

Received Date:  2021-01-15

Fund Project:  Supported by the Special Fund Project for the Central Government to Guide Local Science and Technology Development (2020).

采用原位还原法将铂纳米颗粒负载到聚乙二醇修饰的氧化石墨烯表面(GO/PEG/Pt),此纳米杂化材料在水溶液中表现出较好的类过氧化物酶活性,能快速催化H2O2产生·OH,使显色底物3,3',5,5'-四甲基联苯胺盐酸盐(TMB·2HCl)发生明显的颜色变化,在652 nm处出现吸收峰。当体系中引入汞离子(Hg2+)后,Hg2+被Pt0还原为Hg0,沉积在铂纳米颗粒表面,形成铂汞齐,导致GO/PEG/Pt表面活性位点被占据,使体系的信号输出被抑制,其抑制程度与Hg2+浓度呈线性关系。基于此原理构建了可即时检测Hg2+的可视化信号传感系统,在最佳实验条件下,其光谱分析检出限为3.96 nmol/L,裸眼检出限为10 nmol/L。将本方法用于检测自来水和湖水中的Hg2+,回收率在95.5%~108.6%之间,效果良好。

关键词:   氧化石墨烯, 铂纳米颗粒, 汞离子, 类过氧化物酶, 可视化检测
Key words:   Graphene oxide, Platinum nanoparticles, Mercury ion, Peroxidase-like activity, Visualization
[1]

GUO Y, TAO Y C, MA X W, JIN J, WEN S S, JI W, SONG W, ZHAO B, OZAKI Y. Chem. Eng. J., 2018, 350: 120-130.

[2]

HUANG J H, GAO X, JIA J J, KIM J K, LI Z G. Anal. Chem., 2014, 86(6): 3209-3215.

[3]

HUANG Y, XIA S Y, LYU J J, TANG J C. Chem. Eng. J., 2019, 360: 1646-1655.

[4]

FENG Y X, SHAO X L, HUANG K L, TIAN J J, MEI X H, LUO Y B, XU W T. Chem. Commun., 2018, 54(58): 8036-8039.

[5]

QI L, XIAO M S, WANG F, WANG L H, JI W, MAN T T, ALDALBAHI A, NAZIRUDDIN KHAN M, PERIYASAMI G, RAHAMAN M, ALROHAILI A, QU X M, PEI H, WANG C, LI L. Nanoscale, 2017, 9(37): 14184-14191.

[6]

YUAN A M, WU X L, LI X, HAO C L, XU C L, KUANG H. Small, 2019, 15(27): 1901958.

[7]

DU F Y, SUN L S, ZEN Q L, TAN W, CHENG Z F, RUAN G H, LI J P. Sens. Actuators, B, 2019, 288: 96-103.

[8]

FU J J, ZHU J Y, TIAN Y, HE K, YU H, CHEN L L, FANG D J, JIA D M, XIE J Y, LIU H, WANG J S, TANG F C, TAO J S, LIU J B. Sens. Actuators, B, 2020, 319: 128295.

[9]

GUO C L, IRUDAYARAJ J. Anal. Chem., 2011, 83(8): 2883-2889.

[10]

QING Z H, BAI A L, CHEN L F, XING S H, ZOU Z, LEI Y L, LI J B, LIU J W, YANG R H. CCS Chem., 2020, 2: 1217-1230.

[11]

WU J J X, WANG X Y, WANG Q, LOU Z P, LI S, ZHU Y Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4): 1004-1076.

[12]

KRAWCZYK M, STANISZ E. Talanta, 2016, 161: 384-391.

[13]

MA N, REN X, WANG H, KUANG X, FAN D W, WU D, WEI Q. Anal. Chem., 2020, 92(20): 14069-14075.

[14]

BI C C, KE X X, CHEN X, WEERASOORIYA R, HONG Z Y, WANG L C, WU Y C. Anal. Chim. Acta, 2020, 1100: 31-39.

[15]

XING Y Q, HAN J, WU X, PIERCE D T, ZHAO J X. Microchim. Acta, 2020, 187(1): 56.

[16]

LI X M, ZHANG S T, DANG Y F, LIU Z Y, ZHANG Z, SHAN D L, ZHANG X H, WANG T S, LU X Q. Anal. Chem., 2019, 91(6): 4031-4038.

[17]

ZHANG S T, LI H, WANG Z Y, LIU J, ZHANG H L, WANG B D, YANG Z Y. Nanoscale, 2015, 7(18): 8495-8502.

[18]

ZHANG S T, ZHANG D X, ZHANG X H, SHANG D H, XUE Z H, SHAN D L, LU X Q. Anal. Chem., 2017, 89(6): 3538-3544.

[19]

ZHANG T, ZHANG S T, LIU J, LI J, LU X Q. Anal. Chem., 2020, 92(4): 3426-3433.

[20]

GAO L Z, ZHUANG J, NIE L, ZHANG J B, ZHANG Y, GU N, WANG T H, FENG J, YANG D L, PERRETT S, YAN X Y. Nat. Nanotechnol., 2007, 2(9): 577-583.

[21]

HE S B, YANG L, BALASUBRAMANIAN P, LI S J, PENG H P, KUANG Y, DENG H H, CHEN W. J. Mater. Chem. A, 2020, 8(47): 25226-25234.

[22]

DROZD M, PIETRZAK M, PYTLOS J, MALINOWSKA E. Anal. Chim. Acta, 2016, 948: 80-89.

[23]

JIN L H, MENG Z, ZHANG Y Q, CAI S J, ZHANG Z H, LI C, SHANG L, SHEN Y H. ACS Appl. Mater. Interfaces, 2017, 9(11): 10027-10033.

[24]

LI Z H, YANG X D, YANG Y B, TAN Y N, HE Y, LIU M, LIU X W, YUAN Q. Chem.-Eur.J., 2018, 24(2): 409-415.

[25]

ZHAO X, LYU H Y, YAO X X, XU C, LIU Q Y, LIU Z X, ZHANG X X, ZHANG X. Microchim. Acta, 2020, 187(10): 587.

[26]

YIN J, WANG J H, LI M R, JIN C Z, ZHANG T. Chem. Mater., 2012, 24(14): 2645-2654.

[27]

IVANOVA M N, GRAYFER E D, PLOTNIKOVA E E, KIBIS L S, DARABDHARA G, BORUAH P K, DAS M R, FEDOROV V E. ACS Appl. Mater. Interfaces, 2019, 11(25): 22102-22112.

[28]

LIAN Q, LIU H, ZHENG X F, LI X M, ZHANG F J, GAO J. Appl. Surf. Sci., 2019, 483: 551-561.

[29]

LI X L, YANG X Y, CHENG X W, ZHAO Y Y, LUO W, ELZATAHRY A A, ALGHAMDI A, HE X, SU J C, DENG Y H. J. Colloid Interface Sci., 2020, 570: 300-311.

[30]

YAN Z X, XU Z H, YANG Z H, YUE L, HUANG L Y. Appl. Surf. Sci., 2019, 467: 277-285.

[31]

LIU R, HU J Y, ZHU S Q, LU J P, ZHU H J. ACS Appl. Mater. Interfaces, 2017, 9(38): 33029-33040.

[32]

KORA A J, RASTOGI L. Sens. Actuators, B, 2018, 254: 690-700.

[33]

WANG Y W, WANG L X, AN F P, XU H, YIN Z J, TANG S R, YANG H H, SONG H B. Anal. Chim. Acta, 2017, 980: 72-78.

[34]

SONG C Y, LI J X, SUN Y Z, JIANG X Y, ZHANG J J, DONG C, WANG L H. Sens. Actuators, B, 2020, 310: 127849.

[35]

RASTOGI L, SASHIDHAR R B, KARUNASAGAR D, ARUNACHALAM J. Talanta, 2014, 118: 111-117.

[36]

QI Y, ZHAO J, WENG G J, LI J J, ZHU J, ZHAO J W. Sens. Actuators, B, 2018, 267: 181-190.

[37]

DENG H H, LUO B Y, HE S B, CHEN R T, LIN Z, PENG H P, XIA X H, CHEN W. Anal. Chem., 2019, 91(6): 4039-4046.

[38]

MA C M, MA Y, SUN Y F, LU Y, TIAN E L, LAN J F, LI J L, YE W C, ZHANG H X. J. Colloid Interface Sci., 2019, 537: 554-561.

计量
  • PDF下载量(22)
  • 文章访问量(117)
  • HTML全文浏览量(3)

目录

基于氧化石墨烯/聚乙二醇/铂纳米杂化材料构建Hg2+的信号传感系统

王莹莎, 程姗姗, 张守婷, 卢小泉

Figures and Tables