首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   陈汉, 孙健航, 杨国程. 镍基碳纳米纤维无酶葡萄糖电化学传感器的研究. 分析化学, 2021, 49(6): 1008-1014. doi:  10.19756/j.issn.0253-3820.211091 [复制]

Citation:   CHEN Han , SUN Jian-Hang , YANG Guo-Cheng . Fabrication of Non-enzymatic Glucose Electrochemical Sensor Based on Nickel-base Carbon Nanofibers. Chinese Journal of Analytical Chemistry, 2021, 49(6): 1008-1014. doi: 10.19756/j.issn.0253-3820.211091 [复制]

镍基碳纳米纤维无酶葡萄糖电化学传感器的研究

收稿日期: 2021-01-31

基金项目: 国家自然科学基金项目(No.20105008)和吉林省教育厅科技计划项目(No.JJKH20170544KJ)资助。

Fabrication of Non-enzymatic Glucose Electrochemical Sensor Based on Nickel-base Carbon Nanofibers

Received Date:  2021-01-31

Fund Project:  Supported by the National Natural Science Foundation of China (No.20105008) and the Science and Technology Program of the Education Department of Jilin Province, China (No.JJKH20170544KJ).

以静电纺丝制得Ni和NiMoO4纳米棒掺杂的聚乙烯醇(PVA)碳纳米纤维(CNF),以此两种碳纳米纤维为前驱体,分别进行高温碳化,制备了Ni-CNF和Ni-Mo2C-CNF复合材料。对所制备材料的组成和形貌进行了表征,探究了两种材料对葡萄糖的直接电催化性能,结果表明,Ni-CNF和Ni-Mo2C-CNF对葡萄糖均表现出良好的电催化性能,基于Ni-Mo2C-CNF构建的无酶葡萄糖传感器具有低响应电位(0.45 V)、高灵敏度(198 μA·mmol/(L·cm2))、宽线性范围(0.01~7.0 mmol/L)和低检出限(4.3 μmol/L),并且具有良好的稳定性、重现性和选择性。本研究为无酶葡萄糖传感器研究提供了参考。

关键词:   静电纺丝, 碳纳米纤维, 葡萄糖, 无酶葡萄糖传感器
Key words:   Electrospinning, Carbon nanofiber, Glucose, Non-enzymatic glucose sensor
[1]

ZUO M H, TANG J, XIANG M M, LONG Q, DAI J P, YU G D, ZHANG H G, HU H. J. Cell. Biochem., 2019, 120(5): 8483-8491.

[2]

YANG J, DENG S, LEI J, JU H X, GUNASEKARAN S. Biosens. Bioelectron., 2011, 29(1): 159-166.

[3]

YUAN B, XU C, DENG D, XING Y, LIU L, PANG H, ZHANG D. Electrochim. Acta, 2013, 88: 708-712.

[4]

KUMAR T R, BADU K J, YOO D J, KIM A R, KUMAR G G. RSC Adv., 2015, 52(5): 41457-41467.

[5]

WU S G, ZHANG Z, ZHAO Q, ZHOU L, YAO Y. Chin. J. Chem. Phys., 2014, 27(5): 600-606.

[6]

LI Y, XIE M, ZHANG X, LIU Q, LIN D, XU C, XIE F, SUN X. Sens. Actuators, B, 2019, 278: 126-132.

[7]

LIU Q, HONG X, ZHANG X, WANG W, GUO W, LIU X, YE M. Chem. Eng. J., 2019, 356: 985-993.

[8]

LIAO S H, LU S Y, BAO S J, YU Y N, WANG M Q. Anal. Chim. Acta, 2016, 905: 72-78.

[9]

MORELY T J, PENNER L, SCHAFFER P, RUTH T J, BENARD F, ASSELIN E. Electrochem. Commun., 2012, 15(1): 78-80.

[10]

HASHIM M, HU G G, WANG X, LI X Y, GUO D L. Appl. Surf. Sci., 2012, 258(15): 5858-5862.

[11]

JIA Y T, HUANG G, DONG F C, NI Q Q, NIE W L. Polym. Compos., 2016, 37(9): 2847-2854.

[12]

ZHAO Z W, SUN Y J, DONG F. Nanoscale, 2015, 7(1): 33-37.

[13]

NAI J, WANG S, BAI Y, GUO L. Small, 2016, 9: 3147-3152.

[14]

SHEVLIN S A, GUO Z X. Chem. Mater., 2016, 28(20): 7250-7256.

[15]

QING C, LIU Y, SUN X, YANG X O, WANG H, SUN D, WANG B, ZHOU Q, XU L, TANG Y. RSC Adv., 2016, 72(6): 67785-67793.

[16]

WU X, TANG C J, CHENG J, MIN X B, JIANG S P, WANG S Y. Chem.-Eur. J., 2020, 26(18): 3906-3929.

[17]

ZHOU X H, PENG Y H, GU Z G. Inorg. Chim. Acta, 2009, 362(10): 3447-3453.

[18]

ZHU H, LI L, ZHOU W, SHAO Z, CHEN X. J. Mater. Chem. B, 2016, 4(46): 7333-7349.

[19]

KANNAN P, CHEN F, JIANG H, WANG H, WANG R, SUBRAMANIAN P, JI S. Analyst, 2019, 144: 4925-4934.

[20]

GAO H, XIAO F, CHING C, DUAN H. ACS Appl. Mater. Interfaces, 2011, 3(8): 3049-3057.

[21]

HE Y H, TAN Q, LU L L, SOKOLOWSKI J, WU G. Electrochem. Energy Rev., 2019, 2(2): 231-251.

[22]

SUN L, YANG M J, HUANG J F. Adv. Funct. Mater., 2016, 26(27): 4943-4950.

[23]

BO X, BAI J, YANG L, GUO L. Sens. Actuators, B, 2011, 31(8): 1700-1705.

[24]

WANG M F, HUANG Q A, LI X Z, WEI Y. Anal. Methods, 2012, 4: 3174-3179.

[25]

SUN Q Q, WANG M, BAO S J, WANG Y C, GU S. Analyst, 2016, 141: 256-260.

[26]

XIA C, NING W. Electrochem. Commun., 201012: 1581-1584.

[27]

SUN S, XU Z J. Electrochimica. Acta, 2015, 165: 56-66.

计量
  • PDF下载量(15)
  • 文章访问量(108)
  • HTML全文浏览量(6)

目录

镍基碳纳米纤维无酶葡萄糖电化学传感器的研究

陈汉, 孙健航, 杨国程

Figures and Tables