首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   周晨雨, 房琦, 张玉, 杜衍. 基于Au@Pt纳米粒子-双亲性气凝胶的模拟酶可视化检测抗坏血酸. 分析化学, 2021, 49(6): 982-991. doi:  10.19756/j.issn.0253-3820.211155 [复制]

Citation:   ZHOU Chen-Yu , FANG Qi , ZHANG Yu , DU Yan . Visualized Detection of Ascorbic Acid by Oxidase Mimics Based on Au@Pt Nanoparticles and Amphiphilic Aerogel. Chinese Journal of Analytical Chemistry, 2021, 49(6): 982-991. doi: 10.19756/j.issn.0253-3820.211155 [复制]

基于Au@Pt纳米粒子-双亲性气凝胶的模拟酶可视化检测抗坏血酸

通讯作者:  张玉, zhangyu_jcb@ciac.ac.cn; 杜衍, duyan@ciac.ac.cn

收稿日期: 2021-03-01

基金项目: 国家自然科学基金项目(Nos.21874129,31960506)和吉林省科技厅国际科技合作项目(No.20200801044GH)资助。

Visualized Detection of Ascorbic Acid by Oxidase Mimics Based on Au@Pt Nanoparticles and Amphiphilic Aerogel

Corresponding author:  ZHANG Yu , zhangyu_jcb@ciac.ac.cn; DU Yan , duyan@ciac.ac.cn

Received Date:  2021-03-01

Fund Project:  Supported by the National Natural Science Foundation of China(Nos.21874129, 31960506) and the Department of Science and Technology of Jilin Province, China (No.20200801044GH).

采用水热法在双亲性聚乙烯醇气凝胶(PAA)载体上原位生长Au@Pt纳米粒子,制备Au@Pt-PAAC复合纳米材料。PAA载体上丰富的含氧基团为纳米粒子的生长提供了成核位点,而核壳结构的Au@Pt纳米粒子,一方面由于协同效应提高了材料的类氧化酶活性,另一方面减少了铂的用量,降低了催化剂成本。基于Au@Pt-PAAC材料的类氧化酶活性构筑了比色传感器用于还原性物质抗坏血酸(AA)的可视化检测。在优化的实验条件下,检测AA的线性范围为10~100 μmol/L,检出限为8.77 μmol/L。将本方法用于饮料和维生素C片中的AA含量检测,所得实验结果与样品标示含量一致,因此可用于总抗氧化能力(TAC)的评价。本方法简单、直观、抗干扰能力强,具有良好的实用性。

关键词:   Au@Pt纳米粒子, 氧化酶, 双亲性气凝胶, 比色分析, 抗坏血酸, 总抗氧化能力
Key words:   Au@Pt nanoparticles, Oxidase, Amphiphilic aerogel, Colorimetric analysis, Ascorbic acid, Total antioxidant capacity
[1]

WU J X, WANG X Y, WANG Q, LOU Z P, LI S R, ZHU Y Y, QIN L, WEI H. Chem. Soc. Rev., 2019, 48(4): 1004-1076.

[2]

LIU Z W, WANG F M, REN J S, QU X G. Biomaterials, 2019, 208: 21-31.

[3]

ZHANG L, LIUZ W, DENG Q Q, SANG Y J, DONG K, REN J S, QU X G. Angew. Chem., Int. Ed., 2021, 60(7): 3469-3474.

[4]

LOGAN N, MCVEY C, ELLIOTT C, CAO C. Nano Res., 2020, 13(4): 989-998.

[5]

MENG Y T, LI W F, PAN X L, GADD G M. Environ.-Sci.: Nano, 2020, 7(5): 1305-1318.

[6]

ZHU Y Y, WU J J X, HAN L J, WANG X Y, LI W, GUO H C, WEI H. Anal. Chem., 2020, 92(11): 7444-7452.

[7]

WANG D D, WU H H, WANG C L, GU L, CHEN H Z, JANA D, FENG L L, LIU J W, WANG X Y, XU P P, GUO Z, CHEN Q W, ZHAO Y L. Angew. Chem., Int. Ed., 2021, 60(6): 3001-3007.

[8]

YANG H L, XU B L, LI S S, WU Q Y, LU M Z, HAN A L, LIU H Y. Small, 2021, 17(10): 2007090.

[9]

YU Z Z, LOU R X, PAN W, LI N, TANG B. Chem. Commun., 2020, 56(99): 15513-15524.

[10]

PAN Q W, WANG L. J. Power Sources, 2021, 485: 229335.

[11]

ZHOU Y F, SHEN Y, LUO X L. J. Catal., 2020, 381: 130-138.

[12]

WANG X, CHOI S I, ROLING L T, LUO M, MA C, ZHANG L, CHI M F, LIU J Y, XIE Z X, HERRON J A, MAVRIKAKIS M, XIA Y N. Nat. Commun., 2015, 6: 7594.

[13]

YAO W Q, JIANG X, LI M, LI Y L, LIU Y Y, ZHAN X, FU G T, TANG Y W. Appl. Catal., B, 2021, 282: 119595.

[14]

GUO Z G, ZHANG X, SUN H, DAI X P, YANG Y, LI X S, MENG T T. Electrochim. Acta, 2014, 134: 411-417.

[15]

XU D S, XU P C, WANG X Q, CHEN Y, YU H T, ZHENG D, LI X X. ACS Appl. Mater. Interfaces, 2020, 12(7): 8091-8097.

[16]

WANG X, XIE Z X, LUO M, HUANG H W, CHI M F, HOWE J, XIA Y N. ChemNanoMat, 2016, 2(12): 1086-1091.

[17]

SONG Y H, BI C X, WU C S, HE H P, HUANG L H, WANG D Y, XIA H B. J. Mater. Chem. A, 2017, 5(35): 18878-18887.

[18]

LONG L, CAI R, LIU J B, WU X C. Front. Chem., 2020, 8: 463-471.

[19]

ALSHAMMARI H M, ALSHAMMARI A S, HUMAIDI J R, ALZAHRANI S A, ALHUMAIMESS M S, ALDOSARI O F, HASSAN H M A. Processes, 2020, 8(11): 1380-1390.

[20]

NIU X L, ZHANG W L, HUANG Y, WANG L K, LI Z F, SUN W. New J. Chem., 2020, 44(37): 15975-15982.

[21]

ZHENG Y N, YUAN Y L, CHAI Y Q, YUAN R. Biosens. Bioelectron., 2016, 79: 86-91.

[22]

WANG C Y, YANG Q D, QIN G H, XIAO Y Y, DUAN J Y. Nanoscale, 2020, 12(19): 10532-10542.

[23]

MA C B, DU B J, WANG E K. Adv. Funct. Mater., 2017, 27(10): 1604423.

[24]

MA C B, ZHANG Y, LIU Q, DU Y, WANG E K. Anal. Chem., 2020, 92(7): 5319-5328.

[25]

IVANOVA M N, GRAYFER E D, PLOTNIKOVAE E, KIBIS L S, DARABDHARA G, BORUAH P K, DAS M R, FEDOROV V E. ACS Appl. Mater. Interfaces, 2019, 11(25): 22102-22112.

[26]

ZHANG Y, LIU Q Y, MA C B, WANG Q Q, YANG M T, DU Y. Theranostics, 2020, 10(11): 5064-5073.

[27]

ATAEE-ESFAHANI H, WANG L, NEMOTO Y, YAMAUCHI Y. Chem. Mater., 2010, 22(23): 6310-6318.

[28]

YANG Y, CHEN M, SONG Z L, ZHANG X B. RSC Adv., 2019, 9(49): 28541-28547.

[29]

WANG X R, TABAKMAN S M, DAI H J. J. Am. Chem. Soc., 2008, 130(26): 8152-8153.

[30]

ZHENG X L, XU J B, YAN K Y, WANG H, WANG Z L, YANG S H. Chem. Mater., 2014, 26(7): 2344-2353.

[31]

CHEN Y F, JIAO L, YAN H Y, XU W Q, WU Y, WANG H J, GU W L, ZHU C Z. Anal. Chem., 2020, 92(19): 13518-13524.

[32]

LOU Z P, ZHAO S, WANG Q, WEI H. Anal. Chem., 2019, 91(23): 15267-15274.

[33]

CHEN Q M, LI S Q, LIU Y, ZHANG X D, TANG Y, CHAI H X, HUANG Y M. Sens. Actuators, B, 2020, 305: 127511.

[34]

ZHUO S J, FANG J, LI M, WANG J, ZHU C Q, DU J Y. Microchim. Acta, 2019, 186(12): 745-752.

[35]

DARABDHARA G, SHARMA B, DAS M R, BOUKHERROUB R, SZUNERITS S. Sens. Actuators, B, 2017, 238: 842-851.

[36]

MENG H J, YANG D Q, TU Y F, YAN J L. Talanta, 2017, 165: 346-350.

[37]

MA F H, LUO J J, LI X Q, LIU S P, YANG M H, CHEN X. Spectrochim. Acta, Part A, 2021, 249: 119343.

[38]

WANG X, LONG C C, JIANG Z X, QING T P, ZHANG K W, ZHANG P, FENG B. Anal. Methods, 2019, 11(36): 4580-4585.

[39]

SONG N N, WANG Y Z, YANG X Y, ZONG H L, CHEN Y X, MA Z, CHEN C X. J. Electroanal. Chem., 2020, 873: 114352.

[40]

DING L, HE H, ZHOU J, WANG D N, NIAN Q, LI S Q, QIAN S H, LI W B, LIU C, LIANG Z Y. Nanotechnology, 2021, 32(13): 135501.

[41]

FENG S N, YU L Y, YAN M X, YE J, HUANG J S, YANG X R. Talanta, 2021, 224: 121851.

计量
  • PDF下载量(30)
  • 文章访问量(139)
  • HTML全文浏览量(9)

目录

基于Au@Pt纳米粒子-双亲性气凝胶的模拟酶可视化检测抗坏血酸

周晨雨, 房琦, 张玉, 杜衍

Figures and Tables