首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   田晓春, 李祎頔, 潘琴, 赵峰. 基于扫描电化学显微镜的微生物电化学研究进展. 分析化学, 2021, 49(6): 858-866,906. doi:  10.19756/j.issn.0253-3820.211187 [复制]

Citation:   TIAN Xiao-Chun , LI Yi-Di , PAN Qin , ZHAO Feng . Research Progress and Prospects of Microbial Electrochemistry Based on Scanning Electrochemical Microscopy. Chinese Journal of Analytical Chemistry, 2021, 49(6): 858-866,906. doi: 10.19756/j.issn.0253-3820.211187 [复制]

基于扫描电化学显微镜的微生物电化学研究进展

通讯作者:  赵峰, fzhao@iue.ac.cn

收稿日期: 2021-03-15

基金项目: 国家自然科学基金项目(No.21802133)、中国博士后科学基金项目(No.2018M642574)、中国科学院城市污染物转化联合项目(No.KLUPC-2020-5)和海峡博士后交流资助计划资助。

Research Progress and Prospects of Microbial Electrochemistry Based on Scanning Electrochemical Microscopy

Corresponding author:  ZHAO Feng , fzhao@iue.ac.cn

Received Date:  2021-03-15

Fund Project:  Supported by the National Natural Science Foundation of China (No.21802133), the China Postdoctoral Science Foundation (No.2018M642574), the CAS Key Laboratory of Urban Pollutant Conversion Joint Research Fund (No.KLUPC-2020-5) and the Straits Post-doctoral Exchange Programme of Fujian Province.

微生物是自然界中广泛存在的生命体,它们通过呼吸代谢转化碳水化合物并产生能量的过程与电子转移密切相关,在元素的生物地球化学循环与物质能量转化过程中发挥着关键作用。因此,微生物电化学的原理及其应用近年来备受关注。电化学及其联用技术能够从电子转移层面揭示微生物/非生物界面物质和能量转化机制,是直接、有效的分析手段。其中,扫描电化学显微镜(Scanning electrochemical microscopy,SECM)是一种基于氧化还原反应的空间成像技术,可以原位监测微区环境中的电化学反应信号,具有灵敏高、空间分辨率高等优点。SECM在微观层面揭示微生物电子传递机制方面也发挥了重要作用,涵括了原位监测微生物呼吸活性、产电能力以及生物膜的微区环境(如pH、溶解氧、H2O2浓度)等。本文基于SECM工作原理,详细阐述了其在微生物电子传递机制方面的研究进展,归纳总结了微生物电化学在微生物芯片、生物电化学系统、金属腐蚀等领域的应用潜力,并基于SECM的拓展技术,展望了微生物电化学的发展趋势以及所面临的机遇和挑战。

关键词:   微生物, 扫描电化学显微镜, 微生物电化学, 电子传递, 生物膜, 生物电化学系统, 评述
Key words:   Microorganism, Scanning electrochemical microscopy, Microbial electrochemistry, Electron transfer, Biofilm, Bioelectrochemical system, Review
[1]

LOVLEY D R. Annu. Rev. Microbiol., 2012, 66(1): 391-409.

[2]

XIAO Y, ZHANG E, ZHANG J, DAI Y, YANG Z, CHRISTENSEN H E M, ULSTRUP J, ZHAO F. Sci. Adv., 2017, 3(7): e1700623.

[3]

HOL F J H, DEKKER C. Science, 2014, 346(6208): 1251821.

[4]

ZHAO F, ULSTRUP J. Curr. Opin. Electrochem., 2017, 4(1): 95-97.

[5]

CANIGLIA G, KRANZ C. Anal. Bioanal. Chem., 2020, 412(24): 6133-6148.

[6]

DARCH S E, KOLEY D. Proc. R. Soc. A, 2018, 474(2220): 20180405.

[7]

JOSHI V S, SHEET P S, CULLIN N, KRETH J, KOLEY D. Anal. Chem., 2017, 89(20): 11044-11052.

[8]

HARRIS D, UMMADI J G, THURBER A R, ALLAU Y, VERBA C, COLWELL F, TORRES M E, KOLEY D. Analyst, 2016, 141(10): 2887-2895.

[9]

ZHAN D, FAN R F, BARD A J. Proc. Natl. Acad. Sci. U. S. A., 2008, 105(34): 12118-12122.

[10]

NGUYEN H D, RENSLOW R, BABAUTA J, AHMED B, BEYENAL H. Sens. Actuators, B, 2012, 161(1): 929-937.

[11]

WANG Z, DENG H, CHEN L, XIAO Y, ZHAO F. Bioresour. Technol., 2013, 132: 387-390.

[12]

OKAMOTO A, HASHIMOTO K, NEALSON K H, NAKAMURA R. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(19): 7856-7861.

[13]

KIM J, CONNELL J L, WHITELEY M, BARD A J. Anal. Chem., 2014, 86(24): 12327-12333.

[14]

CONNELL J L, KIM J, SHEAR J B, BARD A J, WHITELEY M. Proc. Natl. Acad. Sci. U. S. A., 2014, 111(51): 18255-18260.

[15]

WANG M, LIU S B, LI F. Acta Mech. Sin., 2019, 35(2): 321-328.

[16]

JIANG X, HU J, PETERSEN E R, FITZGERALD L A, JACKAN C S, LIEBER A M, RINGEISEN B R, LIEBER C M, BIFFINGER J C. Nat. Commun., 2013, 4: 2751.

[17]

LIU H, NEWTON G J, NAKAMURA R, HASHIMOTO K, NAKANISHI S. Angew. Chem., Int. Ed., 2010, 49(37): 6596-6599.

[18]

OULKADI D, BANON S, MUSTIN C, ETIENNE M. Electrochem. Commun., 2014, 44: 1-3.

[19]

HU Z, JIN J, ABRUÑA H D, HOUSTON P L, HAY A G, GHIORSE W C, SHULER M L, HIDALGO G, LION L W. Environ. Sci. Technol., 2006, 41(3): 936-941.

[20]

ABUCAYON E, KE N, CORNUT R, PATELUNAS A, MILLER D, NISHIGUCHI M K, ZOSKI C G. Anal. Chem., 2014, 86(1): 498-505.

[21]

KAYA T, NAGAMINE K, OYAMATSU D, SHIKU H, NISHIZAWA M, MATSUE T. Lab Chip, 2003, 3(4): 313-317.

[22]

ZHANG W J, WU H K, HSING I M. Electroanalysis, 2015, 27(3): 648-655.

[23]

MOREIRA R, SCHÜTZ M K, LIBERT M, TRIBOLLET B, VIVIER V. Bioelectrochemistry, 2014, 97: 69-75.

[24]

YE J, YU J, ZHANG Y, CHEN M, LIU X, ZHOU S, HE Z. Appl. Catal., B, 2019, 257: 117916.

[25]

KAYA T, NISHIZAWA M, YASUKAWA T, NISHIGUCHI M, ONOUCHI T, MATSUE T. Biotechnol. Bioeng., 2001, 76(4): 391-394.

[26]

HOLT K B, BARD A J. Biochemistry, 2005, 44(39): 13214-13223.

[27]

LIN M H, MEHRAEEN S, CHENG G, RUSINEK C, CHAPLIN B P. Environ. Sci. Technol., 2020, 54(1): 446-455.

[28]

RAMANAVICIUS A, MORKVENAITE-VILKONCIENE I, KISIELIUTE A, PETRONIENE J, RAMANAVICIENE A. Colloids Surf., B, 2017, 149: 1-6.

[29]

KISIELIUTE A, POPOVA, APETREI R M, CARAC G, MORKVENAITE-VILKONCIENE I, RAMANAVICIENE A, RAMANAVICIUS A. Chem. Eng. J., 2019, 356: 1014-1021.

[30]

KOLEY D, RAMSEY M M, BARD A J, WHITELEY M. Proc. Natl. Acad. Sci. U. S. A., 2011, 108(50): 19996-20001.

[31]

LIU X, RAMSEY M M, CHEN X, KOLEY D, WHITELEY M, BARD A J. Proc. Natl. Acad. Sci. U. S. A., 2011, 108(7): 2668-2673.

[32]

WANG X, HAN L, XIN H, MIRKIN M V. Anal. Chem., 2019, 91(24): 15355-15359.

[33]

CREMIN K, JONES B A, TEAHAN J, MELONI G N, PERRY D, ZERFASS C, ASALLY M, SOYER O S, UNWIN P R. Anal. Chem., 2020, 92(24): 16024-16032.

[34]

BAE J H, NEPOMNYASHCHII A B, WANG X, POTAPENKO D V, MIRKIN M V. Anal. Chem., 2019, 91(20): 12601-12605.

[35]

ZHAO Z L, LEONARD K C, BOIKA A. Anal. Chem., 2019, 91(4): 2970-2977.

[36]

XU L, ROBERT L, OUYANG Q, TADDEI F, CHEN Y, LINDNER A B, BAIGL D. Nano Lett., 2007, 7(7): 2068-2072.

[37]

GU H, HOU S, YONGYAT C, TORE S D, REN D. Langmuir, 2013, 29(35): 11145-11153.

[38]

TANG J, ZHANG L, TIAN X C. J. Micromech. Microeng., 2010, 20(11): 115030.

[39]

LIU P, HAO W, MOHAMED A, QI X, LIANG P. J. Power Sources, 2021, 491: 229615.

[40]

VALIŪNIENĖ A, PETRONIENĖ J, DULKYS M, RAMANAVICČIUS A. Electroanalysis, 2020, 32(2): 367-374.

[41]

VALIŪNIENĖ A, PETRONIENE J, MORKVENAITE-VILKONCIENE I, POPKIROV G, RAMANAVICIENE A, RAMANAVICIUS A. Phys. Chem. Chem. Phys., 2019, 21(19): 9831-9836.

[42]

GUERRET-LEGRAS L, AUDIBERT J F, OJEDA I M G, DUBACHEVA G V, MIOMANDRE F. Electrochim. Acta, 2019, 305: 370-377.

[43]

LEUNG K M, WANGER G, EL-NAGGAR M Y, GORBYY, SOUTHAM G, LAU W M, YANG J. Nano Lett., 2013, 13(6): 2407-2411.

[44]

MALVANKAR N S, YALCIN S E, TUOMINEN M T, LOVLEY D R. Nat. Nanotechnol., 2014, 9(12): 1012-1017.

[45]

PASQUINA-LEMONCHE L, BURNS J, TURNER R D, KUMAR S, TANK R, MULLIN N, WILSON J S,CHAKRABARTI B, BULLOUGH P A, FOSTER S J, HOBBS J K. Nature, 2020, 582(7811): 294-297.

[46]

ACKERMANN S, STEIMECKE M, MORIG C, SPOHN U, BRON M. J. Electroanal. Chem., 2017, 795: 68-74.

计量
  • PDF下载量(63)
  • 文章访问量(282)
  • HTML全文浏览量(32)

目录

基于扫描电化学显微镜的微生物电化学研究进展

田晓春, 李祎頔, 潘琴, 赵峰

Figures and Tables