首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   高铁男, 熊天逸, 张斯亮, 陈明丽, 王建华, 毛兰群, 于萍. 调控离子传输的电化学分析研究进展. 分析化学, 2021, 49(6): 867-880. doi:  10.19756/j.issn.0253-3820.211261 [复制]

Citation:   GAO Tie-Nan , XIONG Tian-Yi , ZHANG Si-Liang , CHEN Ming-Li , WANG Jian-Hua , MAO Lan-Qun , YU Ping . Advances in Electrochemical Analysis Methods Based on Regulation of Ion Transport. Chinese Journal of Analytical Chemistry, 2021, 49(6): 867-880. doi: 10.19756/j.issn.0253-3820.211261 [复制]

调控离子传输的电化学分析研究进展

通讯作者:  陈明丽, chenml@mail.neu.edu.cn; 于萍, yuping@iccas.ac.cn

收稿日期: 2021-03-30

基金项目: 北京市自然科学基金项目(No.JQ19009)、国家自然科学基金项目(Nos.21775151,22074149,21790053,21790390,21790391)和国家重点研发项目(No.2018YFE0200800)资助。

Advances in Electrochemical Analysis Methods Based on Regulation of Ion Transport

Corresponding author:  CHEN Ming-Li , chenml@mail.neu.edu.cn; YU Ping , yuping@iccas.ac.cn

Received Date:  2021-03-30

Fund Project:  Supported by the Natural Science Foundation of Beijing (No.JQ19009), the National Natural Science Foundation of China (Nos.21775151, 22074149, 21790053, 21790390, 21790391) and the National Key Research and Development Project of China (No.2018YFE0200800).

自19世纪50年代库尔特计数器发明以来,随着单通道电流记录技术及纳米微加工技术的日趋成熟,基于微纳孔道的传感技术逐渐发展成为一种新兴的传感检测平台,因其具有简单、快速、免标记的优势,以及高灵敏度和多功能性而受到广泛的关注。近二十年来,随着研究者对限域空间的离子传输行为的研究以及基于调控固态纳米孔内的离子传输的传感技术的发展,推动了该学科的迅速发展。本文主要从探究离子传输基础行为和调控限域空间内离子传输的分析方法两个方面,对近年来调控固态微纳米孔道中离子传输的电化学分析的原理和方法的研究进展进行了综述。

关键词:   离子传输, 微纳米孔道, 电化学分析, 传感, 评述
Key words:   Ion transport, Micro/nano pore and channel, Electrochemical analysis, Sensing, Review
[1]

ZHANG D, WANG P, LIU G L. Energy Fuels, 2018, 32(6): 7210-7219.

[2]

XU H Y, ZHANG M D, ZHANG H X, ALPADI K, WANG L N, LI R, QIAO J. The Innovation, 2021, 2(1): 100091.

[3]

LU Z H, PENG Z, LIU C, WANG Z H, WANG Y K, JIAO X, LI J, SHEN L. The Innovation, 2020, 1(2): 100041.

[4]

FENG M, PAN Y, KONG R, SHU S. The Innovation, 2020, 1(2): 100032.

[5]

ELLIS D A, MARTIN J W, MUIR D C G, MABURY SCOTT A. Anal. Chem., 2000, 72(4): 726-731.

[6]

FAN L Z. The Innovation, 2021, 2(1): 100073.

[7]

DEAMER D W, ORO J. Biosystems, 1980, 12(3-4): 167-175.

[8]

NEHER E, SAKMANN B. Nature, 1976, 260(5554): 799-802.

[9]

KASIANOWICZ J J, BRANDIN E, BRANTON D, DEAMER D W. Proc. Natl. Acad. Sci. U.S.A., 1996, 93(24): 13770-13773.

[10]

HAYWOOD D G, SAHAS A, BAKER L A, JACOBSON S C. Anal. Chem., 2015, 87(1): 172-187.

[11]

WEI C, BARD A J, FELDBERG S W. Anal. Chem., 1997, 69(22): 4627-4633.

[12]

LIN C Y, COMBS C, SU Y S, YEH L H, SIWY Z S. J. Am. Chem. Soc., 2019, 141(8): 3691-3698.

[13]

ZHANG S Q, SUN T, WANG J H. Microchim. Acta, 2015, 182(7-8): 1387-1393.

[14]

PLETT T S, CAI W J, LE T M, VLASSIOUK I V, PENNER R M, SIWY Z S. J. Phys. Chem. C, 2017, 121(11): 6170-6176.

[15]

WOERMANN D. Phys. Chem. Chem. Phys., 2003, 5(9): 1853-1858.

[16]

SIWY Z S, HEINS E, HARRELL C C, KOHLI P, MARTIN C R. J. Am. Chem. Soc., 2004, 126(35): 10850-10851.

[17]

RAMIREZ P, APEL P Y, CERVERA J, MAFE S. Nanotechnology, 2008, 19(31): 315707.

[18]

CHENG L J, GUO L J. Nano Lett., 2007, 7(10): 3165-3171.

[19]

APEL P Y, BLONSKAYA I V, ORELOVITCH O L, RAMIREZ P, SARTOWSKA B A. Nanotechnology, 2011, 22(17): 175302.

[20]

LIU S J, DONG Y T, ZHAO W B, XIE X, JI T R, YIN X H, LIU Y, LIANG Z W, MOMOTENKO D, LIANG D H, GIRAULT H H, SHAO Y H. Anal. Chem., 2012, 84(13): 5565-5573.

[21]

SIWY Z S. Adv. Funct. Mater., 2006, 16(6): 735-746.

[22]

JIANG Y N, FENG Y P, SU J J, NIE J X, CAO L X, MAO L Q, JIANG L, GUO W. J. Am. Chem. Soc., 2017, 139(51): 18739-18746.

[23]

HE Y, GILLESPIE D, BODA D, VLASSIOUK I, EISENBERG R S, SIWY Z S. J. Am. Chem. Soc., 2009, 131(14): 5194-5202.

[24]

HE X L, ZHANG K L, LIU Y, WU F, YU P, MAO L Q. Angew. Chem., Int. Ed., 2018, 57(17): 4590-4593.

[25]

PEREZ M G, ALBESA A G, TRAUTMANN C, TOIMIL M M E, AZZARONI O. Chem. Sci., 2017, 8(2): 890-913.

[26]

WHITE H S, BUND A. Langmuir, 2008, 24(5): 2212-2218.

[27]

HE X L, ZHANG K L, LI T, JIANG Y N, YU P, MAO L Q. J. Am. Chem. Soc., 2017, 139(4): 1396-1399.

[28]

POGGIOLI A R, SIRIA A, BOCQUET L. J. Phys. Chem. B, 2019, 123(5): 1171-1185.

[29]

GUERRETTE J P, ZHANG B. J. Am. Chem. Soc., 2010, 132(48): 17088-17091.

[30]

MOMOTENKO D, GIRAULT H H. J. Am. Chem. Soc., 2011, 133(37): 14496-14499.

[31]

JUBIN L, POGGIOLI A, SIRIA A, BOCQUET L. Proc. Natl. Acad. Sci. U.S.A., 2018, 115(16): 4063-4068.

[32]

XIONG T Y, ZHANG K L, JIANG Y N, YU P, MAO L Q. Sci. China Chem., 2019, 62: 1346-1359.

[33]

SIWY Z S, POWELL M R, KALMAN E, ASTUMIAN R D, EISENBERG R S. Nano Lett., 2006, 6(3): 473-477.

[34]

LUO L, HOLDEN D A, LAN W J, WHITE H S. ACS Nano, 2012, 6(7): 6507-6514.

[35]

LUO L, HOLDEN D A, WHITE H S. ACS Nano, 2014, 8(3): 3023-3030.

[36]

LIN C Y, WONG P H, WANG P H, SIWY Z S, YEH L H. ACS Appl. Mater. Interfaces, 2020, 12(2): 3198-3204.

[37]

POWELL M R, SULLIVAN M, VLASSIOUK I, CONSTANTIN D, SUDRE O, MARTENS C C, EISENBERG R S, SIWY Z S. Nat. Nanotechnol., 2008, 3(1): 51-57.

[38]

ACAR E T, HINKLE P, SIWY Z S. J. Phys. Chem. C, 2018, 122(6): 3648-3654.

[39]

HYLAND B, SIWY Z S, MARTENS C C. J. Phys. Chem. Lett., 2015, 6(10): 1800–1806.

[40]

INNES L, POWELL M R, VLASSIOUK I, MARTENS C, SIWY Z S. J. Phys. Chem. C, 2010, 114(18): 8126-8134.

[41]

VILOZNY B, ACTIS P, SEGER R A, POURMAND N. ACS Nano, 2011, 5(4): 3191-3197.

[42]

WANG J, FANG R C, HOU J, ZHANG H C, TIAN Y, WANG H T, JIANG L. ACS Nano, 2017, 11(3): 3022-3029.

[43]

ZHAO C, LU J, HOU J, LI X Y, JIANG L, WANG H T, ZHANG H C. Adv. Funct. Mater., 2019, 29(6): 1806416.

[44]

COULTER W H. U.S. Patent, 2,656,508[P]. 1953-10-20.

[45]

LIU Y, XU C, YU P, CHEN X W, WANG J H, MAO L Q. ChemElectroChem., 2018, 5(20): 2954-2962.

[46]

MURRAY R W. Chem. Rev., 2008, 108(7): 2688-2720.

[47]

KOZAK D, ANDERSON W, VOGEL R, CHEN S, ANTAW F, TRAU M. ACS Nano, 2012, 6(8): 6990-6997.

[48]

ROBERTS G S, YUA S, ZENG Q L, CHAN L C, ANDERSON W, COLBY A H, GRINSTAFF M W, REID S, VOGEL R. Biosens. Bioelectron., 2012, 31(1): 17-25.

[49]

FENG J D, LIU K, GRAF M, DUMCENCO D, KIS A, DI VENTRA M, RADENOVIC A. Nat. Mater., 2016, 15(8): 850-855.

[50]

ITO T, SUN L, CROOKS R M. Anal. Chem., 2003, 75(10): 2399-2406.

[51]

ITO T, SUN L, BEVAN M A, CROOKS R M. Langmuir, 2004, 20(16): 6940-6945.

[52]

ITO T, SUN L, HENRIQUEZ R R, CROOKS R M. Acc. Chem. Res., 2005, 38(8): 687-687.

[53]

LAN W J, HOLDEN D A, ZHANG B, WHITE H S. Anal. Chem, 2011, 83(10): 3840-3847.

[54]

PETROSSIAN L, WILK S J, JOSHI P, GOODNICK S M, THORNTON T J. J. Phys.: Conf. Ser., 2008, 109: 012028.

[55]

FRAIKIN J L, TEESALU T, MCKENNEY C M, RUOSLAHTI E, CLELAND A N. Nat. Nanotechnol., 2011, 6(5): 308-313.

[56]

TSUTSUI M, HONGO S, HE Y H, TANIGUCHI M, GEMMA N, KAWAI T. ACS Nano, 2012, 6(4): 3499-3505.

[57]

TSUTSUI M, MAEDA Y, HE Y H, HONGO S, RYUZAKI S, KAWANO S, KAWAI T, TANIGUCHI M. Appl. Phys. Lett., 2013, 103(1): 013108.

[58]

LAN W J, KUBEIL C, XIONG J W, BUND A, WHITE H S. J. Phys. Chem. C, 2014, 118(5): 2726-2734.

[59]

LAN W J, HOLDEN D A, WHITE H S. J. Am. Chem. Soc., 2011, 133(34): 13300-13303.

[60]

ARJMANDI N, VAN ROY W, LAGAE L, BORGHS G. Anal. Chem., 2012, 84(20): 8490-8496.

[61]

OHSHIMA H J. Colloid Interface Sci., 1996, 179(2): 431-438.

[62]

DAVENPORT M, HEALY K, PEVARNIK M, TESLICH N, CABRINI S, MORRISON A P, SIWY Z S, LETANT S E. ACS Nano, 2012, 6(9): 8366-8380.

[63]

LAN W J, HOLDEN D A, LIU J, WHITE H S. J. Phys. Chem. C, 2011, 115(38): 18445-18452.

[64]

ROBERTS G S, KOZAK D, ANDERSON W, BROOM M F, VOGEL R, TRAU M. Small, 2010, 6(23): 2653-2658.

[65]

NOURI R, TANG Z F, GUAN W H. ACS Sens., 2019, 4(11): 3007-3013.

[66]

PEVARNIK M, SCHIEL M, YOSHIMATSU K, VLASSIOUK I V, KWON J S, SHEA K J, SIWY Z S. ACS Nano, 2013, 7(4): 3720-3728.

[67]

HOLDEN D A, HENDRICKSON G, LYON L A, WHITE H S. J. Phys. Chem. C, 2011, 115(7): 2999-3004.

[68]

HOLDEN D A, HENDRICKSON G R, LAN W J, LYON L A, WHITE H S. Soft Matter, 2011, 7(18): 8035-8040.

[69]

DARVISH A, GOYAL G, ANEJA R, SUNDARAM R V, LEE K, AHN C W, KIM K B, VLAHOVSKA P M, KIM M J. Nanoscale., 2016, 8(30): 14420-14431.

[70]

GOYAL G, DARVISH A, KIM M J. Analyst, 2015, 140(14): 4865-4873.

[71]

HOLDEN D A, WATKINS J J, WHITE H S. Langmuir, 2012, 28(19): 7572-7577.

[72]

GUNDERSON C G, PENG Z Y, ZHANG B. Langmuir, 2018, 34(8): 2699-2707.

[73]

LIU Y, XU C, CHEN X W, WANG J H, YU P, MAO L Q. Electrochem. Commun., 2018, 89: 38-42.

[74]

PLATT M, WILLMOTT G R, LEE G U. Small, 2012, 8(15): 2436-2444.

[75]

PLESA C, VERSCHUEREN D, PUD S, VAN D T J, RUITENBERG J W, WITTEVEEN M J, JONSSON M P, GROSBERG A Y, RABIN Y, DEKKER C. Nat. Nanotechnol., 2016, 11(12): 1093-1097.

[76]

LI J, STEIN D, MCMULLAN C, BRANTON D, AZIZ M J, GOLOVCHENKO J A. Nature, 2001, 412(6843): 166-169.

[77]

TALAGA D S, LI J L. J. Am. Chem. Soc., 2013, 135(35): 13220-13220.

[78]

FIRNKES M, PEDONE D, KNEZEVIC J, DOBLINGER M, RANT U. Nano Lett., 2010, 10(6): 2162-2167.

[79]

ARIMA A, HARLISA I H, YOSHIDA T, TSUTSUI M, TANAKA M, YOKOTA K, TONOMURA W, YASUDA J, TANIGUCHI M, WASHIO T, OKOCHI M, KAWAI T. J. Am. Chem. Soc., 2018, 140(48): 16834-16841.

[80]

ARIMA A, TSUTSUI M, YOSHIDA T, TATEMATSU K, YAMAZAKI T, YOKOTA K, KURODA S, WASHIO T, BABA Y, KAWAI T. ACS Sens., 2020, 5(11): 3398-3403.

[81]

LI T, HE X L, ZHANG K L, WANG K, YU P, MAO L Q. Chem Sci., 2016, 7(10): 6365-6368.

[82]

ZHOU Y, WANG D D, LI C P, HU P, JIN Y D. Anal. Chem., 2019, 91(12): 7648-7653.

[83]

LIU Y, XU C, GAO T N, CHEN X W, WANG J H, YU P, MAO L Q. ACS Sens., 2020, 5(8): 2351-2358.

[84]

YI W, XU C, XIONG T Y, GAO T N, YU P, HE X H, MAO L Q. Electrochem. Commun., 2020, 111: 106666.

[85]

GAO T N, GAO X Y, XU C, WANG M L, CHEN M L, WANG J H, MA F R, YU P, MAO L Q. Anal. Chem., 2021, 93(5): 2942-2949.

[86]

ZHANG Z, WEN L P, JIANG L. Chem. Soc. Rev., 2018, 47(2): 322-356.

[87]

WANG J H, MARTIN C R. Nanomedicine, 2008, 3(1): 13-20.

[88]

XIE G H, LI P, ZHAO Z J, ZHU Z P, KONG X Y, ZHANG Z, XIAO K, WEN L P, JIANG L. J. Am. Chem. Soc., 2018, 140(13): 4552-4559.

[89]

ZHANG K L, HE X L, LIU Y, YUP, FEI J J, MAO L Q. Anal. Chem., 2017, 89(12): 6794-6799.

[90]

RUAN Y F, WANG H Y, SHI X M, XU Y T, YU X D, ZHAO W W, CHEN H Y, XU J J. Anal. Chem., 2021, 93(2): 1200-1208.

[91]

ALI M, TAHIR M N, SIWY Z S, NEUMANN R, TREMEL W, ENSINGER W. Anal. Chem., 2011, 83(5): 1673-1680.

[92]

NASCIMENTO R A S, OZEL R E, MAK W H, MULATO M, SINGARAM B, POURMAND N. Nano Lett., 2016, 16(2): 1194-1200.

[93]

UMEHARA S, KARHANEK M, DAVIS R W, POURMAND N. Proc. Natl. Acad. Sci. U. S. A., 2009, 106(12): 4611-4616.

[94]

OZEL R E, LOHITH A, MAK W H, POURMAND N. RSC Adv., 2015, 5(65): 52436-52443.

[95]

ACTIS P, ROGERS A, NIVALA J, VILOZNY B, SEGER R A, JEJELOWO O, POURMAND N. Biosens. Bioelectron., 2011, 26(11): 4503-4507.

[96]

ACTIS P, VILOZNY B, SEGER R A, LI X, JEJELOWO O, RINAUDO M, POURMAND N. Langmuir, 2011, 27(10): 6528-6533.

[97]

SUN Y, ZHANG F, QUAN J X, ZHU F, HONG W, MA J K, PANG H, SUN Y, TIAN D M, LI H B. Nat. Commun., 2018, 9(1): 2617.

[98]

SONG J, XU C H, HUANG S Z, LEI W, RUAN Y F, LU H J, ZHAO W, XU J J,CHEN H Y. Angew. Chem., Int. Ed., 2018, 57(40): 13226-13230.

[99]

WANG H Y, RUAN Y F, ZHU L B, SHI X M, ZHAO W W, CHEN H Y, XU J J. Angew. Chem., Int. Ed., 2021, 60(1):2-9.

[100]

ZHANG K L, XIONG T Y, WU F, YUE Q W, JI W L, YU P, MAO L Q. Sci. China Chem., 2020, 63: 1004-1011.

[101]

ZHANG K L, WEI H, XIONG T Y, JIANG Y N, MA W J, WU F, YU P, MAO L Q. Chem. Sci. 2021, DOI: 10.1039/D1SC00061F.

计量
  • PDF下载量(22)
  • 文章访问量(235)
  • HTML全文浏览量(13)

目录

调控离子传输的电化学分析研究进展

高铁男, 熊天逸, 张斯亮, 陈明丽, 王建华, 毛兰群, 于萍

Figures and Tables