首页 杂志概况 投稿须知 在线投稿 在线阅读 征订启事 广告服务 行业资讯 企业动态 资料中心  专访报道 会展信息 ENGLISH

引用本文:   陈瑶, 文丹. 新型气凝胶在电分析传感领域的应用研究进展. 分析化学, 2021, 49(6): 922-930. doi:  10.19756/j.issn.0253-3820.211263 [复制]

Citation:   CHEN Yao , WEN Dan . Recent Progress of Novel Aerogels in Electroanalytic Sensing. Chinese Journal of Analytical Chemistry, 2021, 49(6): 922-930. doi: 10.19756/j.issn.0253-3820.211263 [复制]

新型气凝胶在电分析传感领域的应用研究进展

通讯作者:  文丹, dan.wen@nwpu.edu.cn

收稿日期: 2021-03-31

基金项目: 国家自然科学基金项目(No.21804108)和陕西省自然科学基金项目(No.2019JM-239)资助。

Recent Progress of Novel Aerogels in Electroanalytic Sensing

Corresponding author:  WEN Dan , dan.wen@nwpu.edu.cn

Received Date:  2021-03-31

Fund Project:  Supported by the National Natural Science Foundation of China (No.21804108) and the Natural Science Foundation of Shaanxi Province, China (No.2019JM-239).

电化学分析方法作为一种重要的分析测试手段,具有响应快速、灵敏度高、操作简便等特点,在许多领域都得到了广泛的研究与应用。为了获得灵敏度高、选择性好、稳定性持久的分析效果,研究者开发了很多种类的材料构筑传感界面,以提升分析性能。新型气凝胶是以低维度纳米材料作为基本单元构建而成的一类多孔材料,将纳米级的结构特征和物理化学性质扩展到宏观尺度,具有密度低、比表面积大、机械性能好、孔隙率高、催化性能优越等优点。这些特性使得此类气凝胶作为电极修饰材料时具有高灵敏度、高选择性、快速响应等特点,在电化学分析领域展现了十分广阔的应用前景。本文介绍了新型气凝胶材料在电化学分析领域的研究进展,综述了其在人体健康和环境监测领域的应用研究进展,并对其发展前景进行了展望。

关键词:   新型气凝胶, 电分析, 传感平台, 多孔材料, 灵敏检测, 评述
Key words:   Novel aerogels, Electroanalysis, Sensing platform, Porous material, Sensitive detection, Review
[1]

LABIB M, SARGENT E H, KELLEY S O. Chem. Rev., 2016, 116(16): 9001-9090.

[2]

ZHU C Z, YANG G H, LI H, DU D, LIN Y H. Anal. Chem., 2015, 87(1): 230-249.

[3]

MARTÍN VÁRGUEZ P E, BRUNEL F, RAIMUNDO J M. ACS Omega, 2020, 5(10): 4733-4742.

[4]

SANGILI A, KALYANI T, CHEN S M, NANDA A, JANA S K. ACS Appl. Bio Mater., 2020, 3(11): 7620-7630.

[5]

TOI P T, TRUNG T Q, DANG T M L, BAE C W, LEE N E. ACS Appl. Mater. Interfaces, 2019, 11(11): 10707-10717.

[6]

POLLOK N E, RABIN C, WALGAMA C T, SMITH L, RICHARDS I, CROOKS R M. ACS Sens., 2020, 5(3): 853-860.

[7]

LEI Y, BUTLER D, LUCKING M C, ZHANG F, XIA T, FUJISAWA K, GRANZIER-NAKAJIMA T, CRUZ-SILVA R, ENDO M, TERRONES H, TERRONES M, EBRAHIMIA. Sci. Adv., 2020, 6(32): eabc4250.

[8]

OH S Y, HONG S Y, JEONG Y R, YUN J, PARK H, JIN S W, LEE G, OH J H, LEE H, LEE S S, HA J S. ACS Appl. Mater. Interfaces, 2018, 10(16): 13729-13740.

[9]

LU M X, DENG Y J, LUO Y, LV J P, LI T B, XU J, CHEN S W, WANG J Y. Anal. Chem., 2019, 91(1): 888-895.

[10]

HE W Y, WANG C Y, WANG H M, JIAN M Q, LU W D, LIANG X P, ZHANG X, YANG F C, ZHANG Y Y. Sci. Adv., 2019, 5(11): eaax0649.

[11]

CAI B, EYCHMVLLER A. Adv. Mater., 2019, 31(31): 1804881.

[12]

WANG H J, FANG Q, GU W L, DU D, LIN Y H, ZHU C Z. ACS Appl. Mater. Interfaces, 2020, 12(47): 52234-52250.

[13]

GUO Y H, BAE J, FANG Z W, LI P P, ZHAO F, YU G H. Chem. Rev., 2020, 120(15): 7642-7707.

[14]

FREYTAG A, SÁNCHEZ PARADINAS S, NASKAR S, WENDT N, COLOMBO M, PUGLIESEG, POPPE J, DEMIRCI C, KRETSCHMER I, BAHNEMANN D W, BEHRENS P, BIGALL N C. Angew. Chem., Int. Ed., 2016, 55(3): 1200-1203.

[15]

HIEKEL K, JUNGBLUT S, GEORGI M, EYCHMÜLLER A. Angew. Chem., Int. Ed., 2020, 59(29): 12048-12054.

[16]

DU R, JOSWIG J O, HÜBNER R, ZHOU L, WEI W, HU Y, EYCHMVLLER A. Angew. Chem., Int. Ed., 2020, 59(21): 8293-8300.

[17]

BAETENS R, JELLE B P, GUSTAVSEN A. Energy Build., 2011, 43(4): 761-769.

[18]

FU G T, YAN X X, CHEN Y F, XU L, SUN D M, LEE J M, TANG Y W. Adv. Mater., 2018, 30(5): 1704609.

[19]

YANG J, ZHANG E W, LI X F, ZHANG Y T, QU J, YU Z Z. Carbon, 2016, 98: 50-57.

[20]

LATTHE S S, NADARGI D Y, RAO A V. Appl. Surf. Sci., 2009, 255(6): 3600-3604.

[21]

MALEKI H. Chem. Eng. J., 2016, 300: 98-118.

[22]

SI Y, WANG X Q, YAN C C, YANG L, YU J Y, DING B. Adv. Mater., 2016, 28(43): 9512-9518.

[23]

STERGAR J, MAVER U. J. Sol-Gel Sci. Technol., 2016, 77(3): 738-752.

[24]

MOHANAN J L, ARACHCHIGE I U, BROCK S L. Science, 2005, 307(5708): 397-400.

[25]

SIEGEL R L, MILLER K D, JEMAL A. CA-Cancer J Clin., 2020, 70(1): 7-30.

[26]

LI R Y, CUI F C, ZHU H Y, SUN X L, LI Z J. Biosens. Bioelectron., 2018, 119: 156-162.

[27]

YANG L, LI Y Y, ZHANG Y, FAN D W, PANG X H, WEI Q, DU B. ACS Appl. Mater. Interfaces, 2017, 9(40): 35260-35267.

[28]

HE Y, XIE S B, YANG X, YUAN R, CHAI Y Q. ACS Appl. Mater. Interfaces, 2015, 7(24): 13360-13366.

[29]

FANG L X, LIU B, LIU L L, LI Y H, HUANG K J, ZHANG Q Y. Sens. Actuators, B, 2016, 222: 1096-1102.

[30]

JEONG J M, YANG M, KIM D S, LEE T J, CHOI B G, KIM D H. J. Colloid Interface Sci., 2017, 506: 379-385.

[31]

GAO Y J, YANG F Y, YU Q H, FAN R, YANG M, RAO S Q, LAN Q C, YANG Z J, YANG Z Q. Microchim. Acta, 2019, 186(3): 192-201.

[32]

YANG C, HU K K, WANG D C, ZUBI Y, LEE S T, PUTHONGKHAM P, MIRKIN M V, VENTON B J. Anal. Chem., 2019, 91(7): 4618-4624.

[33]

WENG B, DING A L, LIU Y Q, DIAO J L, RAZAL J, LAU K T, SHEPHERD R, LI C, CHEN J. Nanoscale, 2016, 8(6): 3416-3424.

[34]

RAJKUMAR C, VEERAKUMAR P, CHEN S M, THIRUMALRAJ B, LIU S B. Nanoscale, 2017, 9(19): 6486-6496.

[35]

LYU Q X, ZHAI Q F, DYSON J, GONG S, ZHAO Y M, LING Y Z, CHANDRASEKARAN R, DONG D S, CHENG W L. Anal. Chem., 2019, 91(21): 13521-13527.

[36]

NOH J, KWON B, HAN E, PARK M, YANG W, CHO W, YOO W, KHANG G, LEE D. Nat. Commun., 2015, 6: 6907.

[37]

YANG Y, ZHANG H, WANG J X, YANG S Y, LIU T Y, TAO K, CHANG H L. J. Mater. Chem. A, 2019, 7(18): 11497-11505.

[38]

CAI Z X, SONG X H, CHEN Y Y, WANG Y R, CHEN X. Sens. Actuators, B, 2016, 222: 567-573.

[39]

KRITTAYAVATHANANON A, SAWANGPHRUK M. Anal. Chem., 2017, 89(24): 13283-13289.

[40]

KANG W J, PEI X, RUSINEK C A, BANGE A, HAYNES E N, HEINEMAN W R, PAPAUTSKY I. Anal. Chem., 2017, 89(6): 3345-3352.

[41]

HU R, ZHANG X, CHI K N, YANG T, YANG Y H. ACS Appl. Mater. Interfaces, 2020, 12(27): 30770-30778.

[42]

WU Y, JIAO L, XU W Q, GU W L, ZHU C Z, DU D, LIN Y H. Small, 2019, 15(17): 1900632-1900640.

[43]

GUO S Q, YANG D, ZHANG S, DONG Q, LI B C, TRAN N, LI Z Y, XIONG Y J, ZAGHLOUL M E. Adv. Funct. Mater., 2019, 29(18): 1900138.

[44]

ZHU P H, LI S S, ZHAO C R, ZHANG Y, YU J H. J. Hazard. Mater., 2020, 384: 121426.

计量
  • PDF下载量(16)
  • 文章访问量(140)
  • HTML全文浏览量(6)

目录

新型气凝胶在电分析传感领域的应用研究进展

陈瑶, 文丹

Figures and Tables