针对番茄内外部结构特征,搭建了可见/近红外透射检测系统,利用完整番茄透射光谱信息,对番茄红素含量进行无损伤快速检测研究。采集的原始光谱曲线经去趋势(DT)、标准正态变量变换(SNV)、多元散射校正(MSC)、归一化(NOR)、一阶导数(FD)预处理后分别用偏最小二乘(PLS)进行建模分析。其中SNV预处理后的模型效果最好,校正集和验证集相关系数分别为0.9771和0.9504,校正集和验证集均方根误差为0.9711和1.0496 mg/kg。为进一步提高模型的精度和稳定性,采用无信息变量消除法(UVE)、连续投影算法(SPA)、竞争性自适应重加权算法(CARS)3种方法单独或联合处理(UVE-SPA,UVE-CARS),对全光谱进行变量优选。经UVE-CARS处理后番茄红素预测模型效果最好,其校正集和验证集相关系数分别提高至0.9830和0.9741,均方根误差分别降低至0.6919和0.7680 mg/kg。最后,选用25个番茄样品对所建立模型进行了外部验证,UVE-CARS-PLS模型的预测集相关系数为0.9812,预测集均方根误差为0.7071 mg/kg,平均相对误差为4.3%。而作为比较的PLS模型的预测集相关系数为0.951,均方根误差为1.0610 mg/kg,平均相对误差6.0%,相比于全光谱PLS模型,UVE-CARS可以很大程度地简化模型,提高模型精度,降低检测的误差限。结果表明,基于自行搭建的番茄可见/近红外透射检测系统结合光谱处理方法,可以实现对生鲜番茄中番茄红素含量的快速、无损检测,为番茄红素定量检测提供了新方法。